Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 March 2025 | Story Andre Damons and Adele Louw | Photo Tania Allen
Agriculture Risk Financing research chair
Prof Johan van Niekerk, Vice-Dean for Agriculture for the Faculty of Natural and Agricultural Sciences; Prof Liezel Massyn, UFS Business School; Prof Nicolene Barkhuizen, Director of the UFS Business School; and Prof Cobus Oberholster, from the Agriculture Risk Financing research chair.

A newly established multi-stakeholder research chair at the University of the Free State (UFS) Business School will focus on holistic and interdisciplinary research that will create new knowledge, contribute to climate change adaptation and mitigation in the food and agricultural sector.

The Agriculture Risk Financing research chair, led by Prof Cobus Oberholster from the Business School, will also support sector specific policy development and implementation, and steer the societal discourse on climate financing and sustainable agriculture. The chair forms part of the UFS, Agricultural Research Council (ARC), and the Department of Agriculture, Land Reform and Rural Development (DALRRD) research chairs. Prof Oberholster joined the university on 1 February 2025 in this prestigious position which is a collaboration between the Business School and the UFS Department of Agricultural Economics.

Prof Oberholster, who spent a big portion of his corporate career in the banking environment, brings extensive expertise in climate finance, resource mobilisation, and sustainable economic practices. His appointment marks a significant milestone in advancing research at the intersection of finance, sustainability, and agriculture, ensuring that innovative financial solutions contribute to environmental resilience and responsible resource management. Prof Oberholster also gained extensive management experience over the past 15 years regarding the agribusiness environment (non-Bank) in South Africa with a specific focus on value-chain financing.

Focus of research chair

Says Prof Oberholster: “The research chair will strategically focus on the mainstreaming of climate-smart financing solutions within the food and agricultural sector. To achieve this, the research will focus on three strategic and interrelated pillars (Regulatory and policy, Entrepreneurial market exchanges and Digital financial innovations), which aim to provide a governance framework within which innovative financing and market mechanisms can be developed and commercialised.

“The chair will reside at the UFS Business School, but form part of a group of research chairs being hosted within the Faculty of Natural and Agricultural Science. These chairs cover the full food and agricultural value chain, which allow for leveraging the output of the chair within very specific components of the value agrifood value chain.”

The ARC-DALLRD-UFS research chairs were established last year in an effort to address the challenges and impact of climate change in Southern Africa and fall under the umbrella of climate change.

Prof Oberholster, who completed two doctoral degrees focusing on agriculture, agricultural development, and agricultural financing, says he is excited to be part of this joint initiative, and the opportunity to share his business and financing experience. “Climate change, and the corresponding need to find innovative financing solutions, is currently one of the biggest global challenges. It requires an accelerated and responsible approach to research and innovation which, together with the university’s trusted reputation, must be used to build social licence for disruptive technological solutions.”

Contributing to food security

According to Prof Oberholster, both the UFS Business School and the faculty, are ideally suited to find complementary commercial solutions for accessing and mobilising climate finance in South Africa and the wider African continent. The chair, through the UFS Business School, will also focus on capacity building which will be done through selected training and educational interventions, with the aim of addressing existing constraints in mobilising and accessing climate finance.

“The chair will focus on the integration of social, ethical and environmental parameters into climate-financing decisions. By focusing on these key sustainability aspects, access to climate finance will not only contribute to specific development objectives but also significantly contribute to food security,” Prof Oberholster says.

“Climate change, and the corresponding need to find innovative financing solutions, is currently one of the biggest global challenges. As such I’m looking forward to guide the creation of new knowledge in this specialised field, and especially to find complementary commercial solutions for accessing and mobilising climate finance in South Africa and the bigger African continent. What is standing out for me is the level of expertise available within the UFS, and the willingness of academics to work together on grand challenges such as climate finance. This is a winning recipe.”

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept