Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 March 2025 | Story Andre Damons and Adele Louw | Photo Tania Allen
Agriculture Risk Financing research chair
Prof Johan van Niekerk, Vice-Dean for Agriculture for the Faculty of Natural and Agricultural Sciences; Prof Liezel Massyn, UFS Business School; Prof Nicolene Barkhuizen, Director of the UFS Business School; and Prof Cobus Oberholster, from the Agriculture Risk Financing research chair.

A newly established multi-stakeholder research chair at the University of the Free State (UFS) Business School will focus on holistic and interdisciplinary research that will create new knowledge, contribute to climate change adaptation and mitigation in the food and agricultural sector.

The Agriculture Risk Financing research chair, led by Prof Cobus Oberholster from the Business School, will also support sector specific policy development and implementation, and steer the societal discourse on climate financing and sustainable agriculture. The chair forms part of the UFS, Agricultural Research Council (ARC), and the Department of Agriculture, Land Reform and Rural Development (DALRRD) research chairs. Prof Oberholster joined the university on 1 February 2025 in this prestigious position which is a collaboration between the Business School and the UFS Department of Agricultural Economics.

Prof Oberholster, who spent a big portion of his corporate career in the banking environment, brings extensive expertise in climate finance, resource mobilisation, and sustainable economic practices. His appointment marks a significant milestone in advancing research at the intersection of finance, sustainability, and agriculture, ensuring that innovative financial solutions contribute to environmental resilience and responsible resource management. Prof Oberholster also gained extensive management experience over the past 15 years regarding the agribusiness environment (non-Bank) in South Africa with a specific focus on value-chain financing.

Focus of research chair

Says Prof Oberholster: “The research chair will strategically focus on the mainstreaming of climate-smart financing solutions within the food and agricultural sector. To achieve this, the research will focus on three strategic and interrelated pillars (Regulatory and policy, Entrepreneurial market exchanges and Digital financial innovations), which aim to provide a governance framework within which innovative financing and market mechanisms can be developed and commercialised.

“The chair will reside at the UFS Business School, but form part of a group of research chairs being hosted within the Faculty of Natural and Agricultural Science. These chairs cover the full food and agricultural value chain, which allow for leveraging the output of the chair within very specific components of the value agrifood value chain.”

The ARC-DALLRD-UFS research chairs were established last year in an effort to address the challenges and impact of climate change in Southern Africa and fall under the umbrella of climate change.

Prof Oberholster, who completed two doctoral degrees focusing on agriculture, agricultural development, and agricultural financing, says he is excited to be part of this joint initiative, and the opportunity to share his business and financing experience. “Climate change, and the corresponding need to find innovative financing solutions, is currently one of the biggest global challenges. It requires an accelerated and responsible approach to research and innovation which, together with the university’s trusted reputation, must be used to build social licence for disruptive technological solutions.”

Contributing to food security

According to Prof Oberholster, both the UFS Business School and the faculty, are ideally suited to find complementary commercial solutions for accessing and mobilising climate finance in South Africa and the wider African continent. The chair, through the UFS Business School, will also focus on capacity building which will be done through selected training and educational interventions, with the aim of addressing existing constraints in mobilising and accessing climate finance.

“The chair will focus on the integration of social, ethical and environmental parameters into climate-financing decisions. By focusing on these key sustainability aspects, access to climate finance will not only contribute to specific development objectives but also significantly contribute to food security,” Prof Oberholster says.

“Climate change, and the corresponding need to find innovative financing solutions, is currently one of the biggest global challenges. As such I’m looking forward to guide the creation of new knowledge in this specialised field, and especially to find complementary commercial solutions for accessing and mobilising climate finance in South Africa and the bigger African continent. What is standing out for me is the level of expertise available within the UFS, and the willingness of academics to work together on grand challenges such as climate finance. This is a winning recipe.”

News Archive

Mushrooms, from gourmet food for humans to fodder for animals
2016-12-19

Description: Mushroom research photo 2 Tags: Mushroom research photo 2 

From the UFS Department of Microbial Biochemical and
Food Biotechnology are, from left: Prof Bennie Viljoen,
researcher,
MSc student Christie van der Berg,
and PhD student Christopher Rothman
Photo: Anja Aucamp

Mushrooms have so many medicinal applications that humans have a substance in hand to promote long healthy lives. And it is not only humans who benefit from these macrofungi growing mostly in dark spaces.

“The substrate applied for growing the mushrooms can be used as animal fodder. Keeping all the medicinal values intact, these are transferred to feed goats as a supplement to their daily diet,” said Prof Bennie Viljoen, researcher in the Department of Microbial, Biochemical and Food Biotechnology at the UFS.

Curiosity and a humble start
“The entire mushroom project started two years ago as a sideline of curiosity to grow edible gourmet mushrooms for my own consumption. I was also intrigued by a friend who ate these mushrooms in their dried form to support his immune system, claiming he never gets sick. The sideline quickly changed when we discovered the interesting world of mushrooms and postgraduate students became involved.

“Since these humble beginnings we have rapidly expanded with the financial help of the Technology Transfer Office to a small enterprise with zero waste,” said Prof Viljoen. The research group also has many collaborators in the industry with full support from a nutraceutical company, an animal feed company and a mushroom growers’ association.

Prof Viljoen and his team’s mushroom research has various aspects.

Growing the tastiest edible mushrooms possible
“We are growing gourmet mushrooms on agricultural waste under controlled environmental conditions to achieve the tastiest edible mushrooms possible. This group of mushrooms is comprised of the King, Pink, Golden, Grey, Blue and Brown Oysters. Other than the research results we have obtained, this part is mainly governed by the postgraduate students running it as a business with the intention to share in the profit from excess mushrooms because they lack research bursaries. The mushrooms are sold to restaurants and food markets at weekends,” said Prof Viljoen.

Description: Mushroom research photo 1 Tags: Mushroom research photo 1 

Photo: Anja Aucamp

Natural alternative for the treatment of various ailments
“The second entity of research encompasses the growth and application of medicinal mushrooms. Throughout history, mushrooms have been used as a natural alternative for the treatment of various ailments. Nowadays, macrofungi are known to be a source of bioactive compounds of medicinal value. These include prevention or alleviation of heart disease, inhibition of platelet aggregation, reduction of blood glucose levels, reduction of blood cholesterol and the prevention or alleviation of infections caused by bacterial, viral, fungal and parasitic pathogens. All of these properties can be enjoyed by capsulation of liquid concentrates or dried powdered mushrooms, as we recently confirmed by trial efforts which are defined as mushroom nutriceuticals,” he said.

Their research focuses on six different medicinal genera, each with specific medicinal attributes:
1.    Maitake: the most dominant property exhibited by this specific mushroom is the reduction of blood pressure as well as cholesterol. Other medicinal properties include anticancer, antidiabetic and immunomodulating while it may also improve the health of HIV patients.
2.    The Turkey Tail mushroom is known for its activity against various tumours and viruses as well as its antioxidant properties.
3.    Shiitake mushrooms have antioxidant properties and are capable of lowering blood serum cholesterol (BSC). The mushroom produces a water-soluble polysaccharide, lentinan, considered to be responsible for anticancer, antimicrobial and antitumour properties.
4.    The Grey Oyster mushroom has medicinal properties such as anticholesterol, antidiabetic, antimicrobial, antioxidant, antitumour and immunomodulatory properties.
5.    Recently there has been an increased interest in the Lion’s Mane mushroom which contains nerve growth factors (NGF) and may be applied as a possible treatment of Alzheimer’s disease as this compound seems to have the ability to re-grow and rebuild myelin by stimulating neurons.
6.    Reishi mushrooms are considered to be the mushrooms with the most medicinal properties due to their enhancing health effects such as treatment of cancer, as well as increasing longevity, resistance and recovery from diseases.


Description: Mushroom research photo 3 Tags: Mushroom research photo 3


Valuable entity for the agricultural sector
Another research focus is the bio-mushroom application phenome, to break down trees growing as encroaching plants. This research is potentially very valuable for the agricultural sector in the areas where Acacia is an encroaching problem. With this process, waste products are upgraded to a usable state. “It is therefore, possible to convert woody biomass with a low digestibility and limited availability of nutrients into high-quality animal fodder. By carefully selecting the right combination of fungus species to ferment agro-wastes, a whole host of advantages could become inherently part of the substrate. Mushrooms could become a biotechnological tool used to ‘inject’ the substrate that will be fed to animals with nutrition and/or medicine as the need and situation dictates,” said Prof Viljoen.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept