Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 March 2025 | Story Precious Shamase | Photo Supplied
Sanelisiwe Khumalo
Sanelisiwe Khumalo, the newly elected member of African Union Student Parliament.

The University of the Free State (UFS) Qwaqwa Campus is radiating with pride as Sociology master's student, Sanelisiwe Khumalo, has been elected to the prestigious African Union Student Parliament (AUSP). This achievement highlights the exceptional calibre of students nurtured within the institution, demonstrating their potential to effect significant change on a continental scale.

 

African Union Student Parliament welcomes UFS representative

Khumalo's election is testament to her academic excellence, unwavering leadership, and profound dedication to student representation. As a student in the Department of Sociology, she has consistently displayed a keen understanding of complex social issues and a fervent passion for driving positive change.

The AUSP serves as a vital platform for student voices across Africa, providing a space for young leaders to engage in meaningful dialogue, advocate for student rights, and contribute to shaping higher education policies. Khumalo's presence in this esteemed body will undoubtedly bring invaluable perspectives, representing the interests of UFS students with distinction.

"Congratulations, Sanelisiwe Khumalo, on your remarkable achievement," remarked Divane Nzima, Senior Lecturer and Subject Head of the Department of Sociology in the Faculty of The Humanities. "Being elected to the African Union Student Parliament is an indication of your dedication to contributing towards positive social change. As a Sociology master’s student at the University of the Free State, you have made us immensely proud. We wish you strength and wisdom to inspire change across the continent."

 

UFS sociology student inspires change on continental stage

Khumalo’s journey is a shining example of the transformative power of education and the boundless opportunities available to students on the UFS Qwaqwa Campus. Her success story embodies the university’s commitment to fostering a supportive and empowering environment where students can thrive and reach their full potential, aligning with the UFS’ Vision 130 as a student-centred institution focused on excellence and impact.

Adding to her impressive journey, Khumalo participated in an enriching exchange programme at the University of Education Freiburg in Germany last year. This collaboration, formalised through a Memorandum of Understanding (MoU), has opened doors for students, staff, and faculty members to engage in valuable academic and cultural exchanges.

Khumalo was an early beneficiary of this partnership and spent four months in Freiburg, immersing herself in the vibrant academic and cultural landscape. "The opportunity to study at the University of Education Freiburg was a dream come true," Khumalo shared. "The university's reputation for innovative teaching methods and its commitment to fostering a diverse and inclusive learning environment were incredibly appealing."

This experience, coupled with her dedication and leadership, has prepared her for the challenges and opportunities that lie ahead in the AUSP. Her journey serves as an inspiration to fellow students, demonstrating that with dedication, passion, and a commitment to excellence, they can achieve their dreams and contribute to shaping a better future.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept