Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Martin Clark
The Department of Geology at the UFS is co-hosting this year’s GeoCongress 2025 with the Geological Society of South Africa. Pictured is Dr Martin Clark, Senior Lecturer in the Department of Geology and convener of the congress.

The Department of Geology in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) and the Geological Society of South Africa will co-host GeoCongress 2025, set to take place from 23 to 27 June 2025 on the UFS Bloemfontein Campus. This prestigious biennial academic event, themed: Embracing change through collaboration, will bring together leading academics, students, and industry experts from across South Africa to explore the latest advancements in geosciences.

The congress reflects the university's commitment to academic excellence, quality, and impact – core tenets of its UFS Vision 130. As a research-led, student-centred, and regionally engaged university, the UFS continues to transform itself to stay relevant within the dynamic and ever-changing international higher education sphere.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, says “The university is proud to co-host this major gathering of established and emerging earth scientists from a variety of disciplines, who will present relevant, timely research topics to a wider audience. The theme underscores the centrality of geosciences to our aspirations as a university for the country and continent, directing us towards a collective sustainable future. We are excited by the ideas to be featured at this conference. More importantly, we are inspired by the prospect of further promoting real interaction and innovation between academia, industry, and society for impactful change.”

A platform for scientific excellence

It is fitting for the UFS to co-host this event, as geologists in the Department of Geology as well as in the province have made significant contributions across multiple fields, including economic geology, palaeontology, and geomorphology.

In the Department of Geology, for instance, researchers are exploring a wide range of topics, including magmatic processes in the platinum-group-bearing Bushveld Igneous Complex, AI-driven prospectivity modelling of global deposits, meteorite impact-related processes in the Vredefort impact structure, and geological and structural studies in the Namaqualand region.

In the Free State, known for its rich mineral resources, including gold, diamonds, and coal, geologists have played a big role in exploring and developing these resources, particularly in the Free State Goldfields, one of South Africa’s leading gold-producing areas. The province also boasts significant coal deposits, important for power generation. In palaeontology, geologists have helped uncover valuable fossil sites, including the Florisbad hominid site, offering insights into the history of life on earth. Additionally, their research in geomorphology, especially around the Florisbad area, has shed light on unique landscapes and depositional environments, including lunette dunes.

In agriculture, geologists have worked closely with farmers to ensure sustainable land use, providing important information on soil composition and erosion prevention. They have also played a key role in the study of groundwater resources, helping to identify and assess borehole sites for irrigation and domestic water supply, which is key to farming in the region. The Institute for Groundwater Studies (IGS) at the UFS is the only institute in South Africa dedicated to geohydrology. Founded in 1974 by Prof FDI Hodgson, the IGS is the oldest institute at the university and has produced more than 1 000 postgraduate students. The institute conducts research on a wide variety of water-related topics. Of special interest is its contribution to the mining and industrial sectors in terms of water management, minimisation of pollution, as well as understanding the nature and behaviour of South Africa's aquifers. The IGS provides a complete service to these industries through field investigations, the development of specialised field equipment, an accredited laboratory, and computer models for aquifer management.

Building on these contributions in the field, GeoCongress 2025 marks an important event on South Africa’s geoscience calendar, showcasing the latest scientific advancements, innovative research, and practical applications shaping the industry. With engaging academic sessions, dynamic workshops, and practical field excursions, the conference offers attendees the opportunity to participate in meaningful discussions, attend insightful presentations, and take part in excursions that bring theory to life.

Opportunities for networking and growth

GeoCongress 2025 is more than just an academic gathering – it is an opportunity for professional growth and networking. Participants will meet peers, mentors, and industry leaders, establishing connections that can lead to new research projects and collaborations.

There is plenty to look forward to at this year's conference. Here are the key dates and event highlights for GeoCongress 2025. 

• Call for abstracts: Closes on 31 March 2025
• Early bird registration: Closes on 31 March 2025
• Final registration deadline: Closes on 22 June 2025

Event highlights:
• 23 and 24 June 2025: Pre-conference workshops and field trips
• 25 to 27 June 2025: Conference programme featuring keynote speakers, academic sessions, and networking opportunities

Registration fees:
• Standard registration: R3 500 (from 1 February 2025)
• Students and retirees: Flat rate of R500 (proof of registration required for students)

Additional costs:
• Workshops and one-day excursions: Visit the GeoCongress website for information on the costs

• Conference/gala dinner: R500

For more information, please contact us at secretariat@geocongress2025.org.za

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept