Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Martin Clark
The Department of Geology at the UFS is co-hosting this year’s GeoCongress 2025 with the Geological Society of South Africa. Pictured is Dr Martin Clark, Senior Lecturer in the Department of Geology and convener of the congress.

The Department of Geology in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) and the Geological Society of South Africa will co-host GeoCongress 2025, set to take place from 23 to 27 June 2025 on the UFS Bloemfontein Campus. This prestigious biennial academic event, themed: Embracing change through collaboration, will bring together leading academics, students, and industry experts from across South Africa to explore the latest advancements in geosciences.

The congress reflects the university's commitment to academic excellence, quality, and impact – core tenets of its UFS Vision 130. As a research-led, student-centred, and regionally engaged university, the UFS continues to transform itself to stay relevant within the dynamic and ever-changing international higher education sphere.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, says “The university is proud to co-host this major gathering of established and emerging earth scientists from a variety of disciplines, who will present relevant, timely research topics to a wider audience. The theme underscores the centrality of geosciences to our aspirations as a university for the country and continent, directing us towards a collective sustainable future. We are excited by the ideas to be featured at this conference. More importantly, we are inspired by the prospect of further promoting real interaction and innovation between academia, industry, and society for impactful change.”

A platform for scientific excellence

It is fitting for the UFS to co-host this event, as geologists in the Department of Geology as well as in the province have made significant contributions across multiple fields, including economic geology, palaeontology, and geomorphology.

In the Department of Geology, for instance, researchers are exploring a wide range of topics, including magmatic processes in the platinum-group-bearing Bushveld Igneous Complex, AI-driven prospectivity modelling of global deposits, meteorite impact-related processes in the Vredefort impact structure, and geological and structural studies in the Namaqualand region.

In the Free State, known for its rich mineral resources, including gold, diamonds, and coal, geologists have played a big role in exploring and developing these resources, particularly in the Free State Goldfields, one of South Africa’s leading gold-producing areas. The province also boasts significant coal deposits, important for power generation. In palaeontology, geologists have helped uncover valuable fossil sites, including the Florisbad hominid site, offering insights into the history of life on earth. Additionally, their research in geomorphology, especially around the Florisbad area, has shed light on unique landscapes and depositional environments, including lunette dunes.

In agriculture, geologists have worked closely with farmers to ensure sustainable land use, providing important information on soil composition and erosion prevention. They have also played a key role in the study of groundwater resources, helping to identify and assess borehole sites for irrigation and domestic water supply, which is key to farming in the region. The Institute for Groundwater Studies (IGS) at the UFS is the only institute in South Africa dedicated to geohydrology. Founded in 1974 by Prof FDI Hodgson, the IGS is the oldest institute at the university and has produced more than 1 000 postgraduate students. The institute conducts research on a wide variety of water-related topics. Of special interest is its contribution to the mining and industrial sectors in terms of water management, minimisation of pollution, as well as understanding the nature and behaviour of South Africa's aquifers. The IGS provides a complete service to these industries through field investigations, the development of specialised field equipment, an accredited laboratory, and computer models for aquifer management.

Building on these contributions in the field, GeoCongress 2025 marks an important event on South Africa’s geoscience calendar, showcasing the latest scientific advancements, innovative research, and practical applications shaping the industry. With engaging academic sessions, dynamic workshops, and practical field excursions, the conference offers attendees the opportunity to participate in meaningful discussions, attend insightful presentations, and take part in excursions that bring theory to life.

Opportunities for networking and growth

GeoCongress 2025 is more than just an academic gathering – it is an opportunity for professional growth and networking. Participants will meet peers, mentors, and industry leaders, establishing connections that can lead to new research projects and collaborations.

There is plenty to look forward to at this year's conference. Here are the key dates and event highlights for GeoCongress 2025. 

• Call for abstracts: Closes on 31 March 2025
• Early bird registration: Closes on 31 March 2025
• Final registration deadline: Closes on 22 June 2025

Event highlights:
• 23 and 24 June 2025: Pre-conference workshops and field trips
• 25 to 27 June 2025: Conference programme featuring keynote speakers, academic sessions, and networking opportunities

Registration fees:
• Standard registration: R3 500 (from 1 February 2025)
• Students and retirees: Flat rate of R500 (proof of registration required for students)

Additional costs:
• Workshops and one-day excursions: Visit the GeoCongress website for information on the costs

• Conference/gala dinner: R500

For more information, please contact us at secretariat@geocongress2025.org.za

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept