Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Martin Clark
The Department of Geology at the UFS is co-hosting this year’s GeoCongress 2025 with the Geological Society of South Africa. Pictured is Dr Martin Clark, Senior Lecturer in the Department of Geology and convener of the congress.

The Department of Geology in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) and the Geological Society of South Africa will co-host GeoCongress 2025, set to take place from 23 to 27 June 2025 on the UFS Bloemfontein Campus. This prestigious biennial academic event, themed: Embracing change through collaboration, will bring together leading academics, students, and industry experts from across South Africa to explore the latest advancements in geosciences.

The congress reflects the university's commitment to academic excellence, quality, and impact – core tenets of its UFS Vision 130. As a research-led, student-centred, and regionally engaged university, the UFS continues to transform itself to stay relevant within the dynamic and ever-changing international higher education sphere.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, says “The university is proud to co-host this major gathering of established and emerging earth scientists from a variety of disciplines, who will present relevant, timely research topics to a wider audience. The theme underscores the centrality of geosciences to our aspirations as a university for the country and continent, directing us towards a collective sustainable future. We are excited by the ideas to be featured at this conference. More importantly, we are inspired by the prospect of further promoting real interaction and innovation between academia, industry, and society for impactful change.”

A platform for scientific excellence

It is fitting for the UFS to co-host this event, as geologists in the Department of Geology as well as in the province have made significant contributions across multiple fields, including economic geology, palaeontology, and geomorphology.

In the Department of Geology, for instance, researchers are exploring a wide range of topics, including magmatic processes in the platinum-group-bearing Bushveld Igneous Complex, AI-driven prospectivity modelling of global deposits, meteorite impact-related processes in the Vredefort impact structure, and geological and structural studies in the Namaqualand region.

In the Free State, known for its rich mineral resources, including gold, diamonds, and coal, geologists have played a big role in exploring and developing these resources, particularly in the Free State Goldfields, one of South Africa’s leading gold-producing areas. The province also boasts significant coal deposits, important for power generation. In palaeontology, geologists have helped uncover valuable fossil sites, including the Florisbad hominid site, offering insights into the history of life on earth. Additionally, their research in geomorphology, especially around the Florisbad area, has shed light on unique landscapes and depositional environments, including lunette dunes.

In agriculture, geologists have worked closely with farmers to ensure sustainable land use, providing important information on soil composition and erosion prevention. They have also played a key role in the study of groundwater resources, helping to identify and assess borehole sites for irrigation and domestic water supply, which is key to farming in the region. The Institute for Groundwater Studies (IGS) at the UFS is the only institute in South Africa dedicated to geohydrology. Founded in 1974 by Prof FDI Hodgson, the IGS is the oldest institute at the university and has produced more than 1 000 postgraduate students. The institute conducts research on a wide variety of water-related topics. Of special interest is its contribution to the mining and industrial sectors in terms of water management, minimisation of pollution, as well as understanding the nature and behaviour of South Africa's aquifers. The IGS provides a complete service to these industries through field investigations, the development of specialised field equipment, an accredited laboratory, and computer models for aquifer management.

Building on these contributions in the field, GeoCongress 2025 marks an important event on South Africa’s geoscience calendar, showcasing the latest scientific advancements, innovative research, and practical applications shaping the industry. With engaging academic sessions, dynamic workshops, and practical field excursions, the conference offers attendees the opportunity to participate in meaningful discussions, attend insightful presentations, and take part in excursions that bring theory to life.

Opportunities for networking and growth

GeoCongress 2025 is more than just an academic gathering – it is an opportunity for professional growth and networking. Participants will meet peers, mentors, and industry leaders, establishing connections that can lead to new research projects and collaborations.

There is plenty to look forward to at this year's conference. Here are the key dates and event highlights for GeoCongress 2025. 

• Call for abstracts: Closes on 31 March 2025
• Early bird registration: Closes on 31 March 2025
• Final registration deadline: Closes on 22 June 2025

Event highlights:
• 23 and 24 June 2025: Pre-conference workshops and field trips
• 25 to 27 June 2025: Conference programme featuring keynote speakers, academic sessions, and networking opportunities

Registration fees:
• Standard registration: R3 500 (from 1 February 2025)
• Students and retirees: Flat rate of R500 (proof of registration required for students)

Additional costs:
• Workshops and one-day excursions: Visit the GeoCongress website for information on the costs

• Conference/gala dinner: R500

For more information, please contact us at secretariat@geocongress2025.org.za

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept