Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 May 2025 | Story Leonie Bolleurs | Photo Supplied
Ruhan Fourie
Dr Ruhan Fourie, former postdoctoral fellow in the UFS International Studies Group and current researcher at Stellenbosch University’s Beyers Naudé Centre for Public Theology, was recently awarded the prestigious Desmond Tutu-Gerrit Brand Prize.

Dr Ruhan Fourie, a former fellow of the International Studies Group (ISG) at the University of the Free State (UFS), recently received the prestigious Desmond Tutu-Gerrit Brand Prize for Debut Work for his book, Christian Nationalism and Anticommunism in Twentieth Century South Africa (Routledge, published in South Africa by Christian Literature Fund).

A media release by the Andrew Murray-Desmond Tutu Prize Fund stated that the prizes primarily serve as motivation and recognition for writers to produce quality publications of theological and Christian work in all official languages of our country. The awards are given in recognition of extraordinary contributions to unity, reconciliation, and environmental justice in our country.

Currently a postdoctoral fellow in the Beyers Naudé Centre for Public Theology at the Stellenbosch University Faculty of Theology, Dr Fourie says the award is especially meaningful because of the book’s academic tone. “I hold public accessibility to scholarly work dear; so, to receive this recognition for a more scholarly work outside academia is very encouraging. When I got the call that I’d won the prize, it was met with great surprise and joy,” he says.

 

Challenging Cold War assumptions

In the book, he explores the deep-rooted fears that Afrikaners held about communism during the twentieth century. These fears are often assumed to be Cold War products, primarily shaped by the apartheid state. However, Dr Fourie’s research, undertaken as part of his postdoctoral fellowship in the UFS International Studies Group, challenges this simplified narrative. He approached anticommunism more broadly than merely opposition to the state-centred communist doctrine by focusing on the Dutch Reformed Church (DRC), which had the widest reach and deepest influence in the everyday lives of Afrikaners.

The book argues that while the DRC played a constant role in shaping an anti-communist imagination among twentieth-century Afrikaners, its influence shifted over time. “It ultimately concludes that anticommunism functioned as a vehicle for nationalist unity (and uniformity), a paradigm for Afrikaner identity, and a legitimiser of the volk’s perceptions of its imagined moral high ground throughout the twentieth century,” he notes.

Dr Fourie credits his time as a postdoctoral fellow (2022-2023) in the UFS ISG as a key part of developing his book. He describes the ISG as a place offering strong institutional support, valuable mentorship, and the academic freedom he needed to shape his ideas into a full monograph. As part of a research-led, student-centred, and regionally engaged institution such as the UFS – which is committed to development and serves as a hub of impactful knowledge – Dr Fourie found the right space to grow both his research and his contribution to the field of South African history.

 

Impact of UFS' academic environment

He spent a significant part of his emerging academic journey at the UFS. Besides the time he spent on his postdoctoral fellowship at the ISG, he also completed his PhD between 2018 and 2021 – marking a total association of six years with the university. “The ISG’s culture of scholarly rigour, academic freedom, mentorship, and institutional support under the guidance of Prof Ian Phimister, paired with collegiality and collaboration among peers, left a formative impression on me as an aspiring academic,” he comments.

Looking ahead, Dr Fourie is currently working on a project – a biography of anti-apartheid cleric Beyers Naudé. While based on solid academic research, the biography is being written for a wider audience and is aimed at trade publication, an approach that will bring Naudé’s life and legacy to both scholarly and general readers. His interest in Naudé runs deep; his master’s thesis on Naudé’s life was awarded a prize for the best Afrikaans thesis, an early indicator of the path his academic work would follow.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept