Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2025 | Story André Damons | Photo André Damons
Research room
Prof Corinna Walsh from the UFS Department of Nutrition and Dietetics explains how the PEA POD® infant body composition analyser works. Dr Balekile Mzangwa, CEO of Universitas Academic Hospital, and Dr Grace London, Chief Director: District Health services at the Free State Department of Health, listens in.

In a significant stride toward improving maternal and child health in the Free State, the Universitas Academic Hospital, in collaboration with the Faculty of Health Sciences at the University of the Free State (UFS), has launched an innovative Research Room which houses the PEA POD® infant body composition analyser and the Dual-Energy X-ray Absorptiometry (DXA) machine used to assess body composition and bone mineral density.

The initiative, which marks a new era in neonatal care and research, aims to integrate cutting-edge technology into routine clinical care. The PEA POD®, a non-invasive device that uses air displacement plethysmography, allows for precise measurement of fat and fat-free mass in newborns – offering a more accurate assessment of growth and nutritional status than traditional methods. 

The research room is a newly renovated and dedicated space adjacent to the maternity and neonatal units, ensuring quick, safe access to the newborns in the hospital. Two full-time MSc Dietetics students have been trained to perform the PEAPOD® assessments and colleagues from Radiography will perform the DXA assessments. This work lays the foundation for an ongoing maternal and infant body composition database –  a valuable resource for research, clinical care, and policy guidance.

Aligned with national health priorities

According to Prof Corinna Walsh from the UFS Department of Nutrition and Dietetics, this initiative is the result of a multidisciplinary collaboration across Paediatrics and Child Health, Obstetrics and Gynaecology, Radiography, Nutrition and Dietetics, to mention just a few of the collaborators. They are optimistic about the dual impact of this project as it advances academic and clinical research in early-life nutrition and growth as well as enhancing patient care at Universitas Hospital – bringing measurable benefits to mothers and their babies, she said. 

“This initiative is well aligned with national health priorities. According to the South African Early Childhood Review 2024, malnutrition in all its forms remains a significant challenge with short- and long-term consequences for mothers and their babies, especially during the first 1 000 days of life, from conception to the second birthday.

“We know from global and local evidence that growth patterns established during early life have profound and lasting effects on an individual’s health, development, and well-being. Our work at the University of the Free State has focused on the nutritional status of pregnant women and the early environments to which infants are exposed, both during and after pregnancy,” said Prof Walsh. 

However, she continued, in previous studies, they faced a significant challenge: the lack of specialised equipment to accurately measure infant body composition. Traditional measures such as weight and length provide only part of the picture.

 

New possibilities in healthcare, science, and service

Dr Mzangwa said the day not only marks the unveiling of state-of-the-art technology, but the beginning of a new chapter in how they will care for and understand the youngest and most vulnerable patients. The PEA POD® and DXA, which is now housed just steps away from the maternity and neonatal wards, symbolise a shared vision between the hospital and the Faculty of Health Sciences at the UFS: a vision grounded in evidence-based care, cutting-edge research, and above all, compassion.

“We express our sincere appreciation to everyone who supported this initiative. We also acknowledge the dedication of all the collaborating departments – Paediatrics and Child Health, Obstetrics and Gynaecology, Radiography, Nutrition and Dietetics –  and thank Prof Corinna Walsh and Dr Lizzy Tabane for their leadership and insight.”

Prof Janse van Vuuren, said: “Today, we do more than open a physical space. We open the door to new possibilities in healthcare, science, and service to the people of our province. It is a shining example of what can be achieved when government and academia come together, united by a common purpose – to improve lives through knowledge, innovation, and care.”

The technologies that will be used in this facility are more than just advanced instruments, they are tools that allow medical staff to better understand the human body in its earliest and most vulnerable stages, as well as throughout the lifespan. With this understanding comes the ability to make informed decisions, to intervene earlier, and to tailor care in ways that truly meet the needs of our patients, said Prof Janse van Vuuren.

“This space is more than a research centre. It is a testament to our commitment to evidence-based care. It is a place where data meets compassion, where science serves humanity. The work that will happen here will not be confined to the walls of academia –  it has the potential to ripple outward into clinics, into hospitals, and into homes. It will shape guidelines, inform policy, and ultimately, improve outcomes for patients across our province and beyond.”


News Archive

UFS scientists involved in groundbreaking research to protect rhino horns
2010-07-27

Pictured from the left are: Prof. Paul Grobler (UFS), Prof. Antoinette Kotze (NZG) and Ms. Karen Ehlers (UFS).
Photo: Supplied

Scientists at the University of the Free State (UFS) are involved in a research study that will help to trace the source of any southern white rhino product to a specific geographic location.

This is an initiative of the National Zoological Gardens of South Africa (NZG).

Prof. Paul Grobler, who is heading the project in the Department of Genetics at the UFS, said that the research might even allow the identification of the individual animal from which a product was derived. This would allow law enforcement agencies not only to determine with certainty whether rhino horn, traded illegally on the international black market, had its origin in South Africa, but also from which region of South Africa the product came.

This additional knowledge is expected to have a major impact on the illicit trade in rhino horn and provide a potent legal club to get at rhino horn smugglers and traders.

The full research team consists of Prof. Grobler; Christiaan Labuschagne, a Ph.D. student at the UFS; Prof. Antoinette Kotze from the NZG, who is also an affiliated professor at the UFS; and Dr Desire Dalton, also from the NZG.

The team’s research involves the identification of small differences in the genetic code among white rhino populations in different regions of South Africa. The genetic code of every species is unique, and is composed of a sequence of the four nucleotide bases G, A, T and C that are inherited from one generation to the next. When one nucleotide base is changed or mutated in an individual, this mutated base is also inherited by the individual's progeny.

If, after many generations, this changed base is present in at least 1% of the individuals of a group, it is described as a single nucleotide polymorphism (SNP), pronounced "snip". Breeding populations that are geographically and reproductively isolated often contain different patterns of such SNPs, which act as a unique genetic signature for each population.

The team is assembling a detailed list of all SNPs found in white rhinos from different regions in South Africa. The work is done in collaboration with the Pretoria-based company, Inqaba Biotech, who is performing the nucleotide sequencing that is required for the identification of the SNPs.

Financial support for the project is provided by the Advanced Biomolecular Research cluster at the UFS.

The southern white rhino was once thought to be extinct, but in a conservation success story the species was boosted from an initial population of about 100 individuals located in KwaZulu-Natal at the end of the 19th century, to the present population of about 15 000 individuals. The southern white rhino is still, however, listed as “near threatened” by the World Wildlife Fund (WWF).

Media Release:
Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za 
27 July 2010



 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept