Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2025 | Story André Damons | Photo André Damons
Research room
Prof Corinna Walsh from the UFS Department of Nutrition and Dietetics explains how the PEA POD® infant body composition analyser works. Dr Balekile Mzangwa, CEO of Universitas Academic Hospital, and Dr Grace London, Chief Director: District Health services at the Free State Department of Health, listens in.

In a significant stride toward improving maternal and child health in the Free State, the Universitas Academic Hospital, in collaboration with the Faculty of Health Sciences at the University of the Free State (UFS), has launched an innovative Research Room which houses the PEA POD® infant body composition analyser and the Dual-Energy X-ray Absorptiometry (DXA) machine used to assess body composition and bone mineral density.

The initiative, which marks a new era in neonatal care and research, aims to integrate cutting-edge technology into routine clinical care. The PEA POD®, a non-invasive device that uses air displacement plethysmography, allows for precise measurement of fat and fat-free mass in newborns – offering a more accurate assessment of growth and nutritional status than traditional methods. 

The research room is a newly renovated and dedicated space adjacent to the maternity and neonatal units, ensuring quick, safe access to the newborns in the hospital. Two full-time MSc Dietetics students have been trained to perform the PEAPOD® assessments and colleagues from Radiography will perform the DXA assessments. This work lays the foundation for an ongoing maternal and infant body composition database –  a valuable resource for research, clinical care, and policy guidance.

Aligned with national health priorities

According to Prof Corinna Walsh from the UFS Department of Nutrition and Dietetics, this initiative is the result of a multidisciplinary collaboration across Paediatrics and Child Health, Obstetrics and Gynaecology, Radiography, Nutrition and Dietetics, to mention just a few of the collaborators. They are optimistic about the dual impact of this project as it advances academic and clinical research in early-life nutrition and growth as well as enhancing patient care at Universitas Hospital – bringing measurable benefits to mothers and their babies, she said. 

“This initiative is well aligned with national health priorities. According to the South African Early Childhood Review 2024, malnutrition in all its forms remains a significant challenge with short- and long-term consequences for mothers and their babies, especially during the first 1 000 days of life, from conception to the second birthday.

“We know from global and local evidence that growth patterns established during early life have profound and lasting effects on an individual’s health, development, and well-being. Our work at the University of the Free State has focused on the nutritional status of pregnant women and the early environments to which infants are exposed, both during and after pregnancy,” said Prof Walsh. 

However, she continued, in previous studies, they faced a significant challenge: the lack of specialised equipment to accurately measure infant body composition. Traditional measures such as weight and length provide only part of the picture.

 

New possibilities in healthcare, science, and service

Dr Mzangwa said the day not only marks the unveiling of state-of-the-art technology, but the beginning of a new chapter in how they will care for and understand the youngest and most vulnerable patients. The PEA POD® and DXA, which is now housed just steps away from the maternity and neonatal wards, symbolise a shared vision between the hospital and the Faculty of Health Sciences at the UFS: a vision grounded in evidence-based care, cutting-edge research, and above all, compassion.

“We express our sincere appreciation to everyone who supported this initiative. We also acknowledge the dedication of all the collaborating departments – Paediatrics and Child Health, Obstetrics and Gynaecology, Radiography, Nutrition and Dietetics –  and thank Prof Corinna Walsh and Dr Lizzy Tabane for their leadership and insight.”

Prof Janse van Vuuren, said: “Today, we do more than open a physical space. We open the door to new possibilities in healthcare, science, and service to the people of our province. It is a shining example of what can be achieved when government and academia come together, united by a common purpose – to improve lives through knowledge, innovation, and care.”

The technologies that will be used in this facility are more than just advanced instruments, they are tools that allow medical staff to better understand the human body in its earliest and most vulnerable stages, as well as throughout the lifespan. With this understanding comes the ability to make informed decisions, to intervene earlier, and to tailor care in ways that truly meet the needs of our patients, said Prof Janse van Vuuren.

“This space is more than a research centre. It is a testament to our commitment to evidence-based care. It is a place where data meets compassion, where science serves humanity. The work that will happen here will not be confined to the walls of academia –  it has the potential to ripple outward into clinics, into hospitals, and into homes. It will shape guidelines, inform policy, and ultimately, improve outcomes for patients across our province and beyond.”


News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept