Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2025 | Story André Damons | Photo Supplied
Dr Lisa Rothmann
Dr Lisa Rothmann, a plant disease epidemiologist from the University of the Free State (UFS), has been nominated in the TW Kambule-NSTF Award: Emerging Researcher category for this year’s NSTF-South32 Awards.

Dr Lisa Rothmann, a plant disease epidemiologist from the University of the Free State (UFS) who was nominated in the TW Kambule-NSTF Award: Emerging Researcher category for this year’s NSTF-South32 Awards, says that the nomination is a reminder that service through science matters.

“I am humbled by the nomination. For me, it reflects not just individual recognition, but also the shared effort of the team of postgraduate academics, research assistants, partners, and farmers with whom I've had the privilege to work with. It is affirming to see plant pathology and field-based research recognised in this way; it highlights the consistent (hard) work we do to make a meaningful contribution to agriculture and to serve the grain industry and farmers,” says Dr Rothmann. 

She was nominated by Grain South Africa (Grain SA), with whom she has been working closely since 2018 to contribute research that aligns with the organisation’s mission to strengthen the grain sector. They play a key role in supporting sustainable grain production and farmer development. 

Dr Rothmann, who is one of eight UFS researchers and a research team nominated for the NSTF-South32 Awards – also known as the ‘Science Oscars’ – is nominated for her contribution to interdisciplinary, team-based research to develop practical solutions for plant diseases in order to protect crops and empower communities. 

 

Motivation to keep growing

The Senior Lecturer in the Department of Plant Sciences within the Faculty of Natural and Agricultural Sciences (NAS) says that while she is proud of the work she has done, she sees this recognition as a team effort. Says Dr Rothmann: “It motivates me to keep growing as a researcher, rooted in impact and integrity. I’m not a prolific peer-reviewed publisher; my academic record includes 10 journal articles and one book chapter, but I have written around 50 popular articles – often as a solo author, in collaboration with postgraduates and peers.” 

“These pieces translate plant pathology topics such as the Sclerotinia life cycle, disease surveillance, and management into accessible information for producers and the public. To me, this nomination is a symbol that making a meaningful impact doesn't only come from journal impact factors. This nomination has reminded me that building a career in academia is a relay, not a race, and that lasting impact comes from investing in others.”

As a plant disease epidemiologist, she specialises in field pathology – an area of plant pathology that explores how disease epidemics in crops develop, spread, and can be effectively managed within agricultural systems. Their work centres on understanding and managing Sclerotinia diseases in oilseed and protein crops such as canola, soybean, and sunflower, as well as disease surveillance in key grain crops including dry bean, sorghum, and sunflower.

 

New research

After participating in the US-based National Sclerotinia Initiative in 2017, she was inspired to establish a South African Sclerotinia Research Network with the support of Grain SA, creating a platform for researcher collaboration, farmer engagement, and the development of on-farm management strategies. Over time, explains Dr Rothmann, their research has expanded to include cultivar screening, national disease surveys, fungicide registration trials, and the development of disease-assessment tools. More recently, they have embedded sociological surveys into sorghum disease work to better understand farmers’ knowledge and needs, ensuring that research remains practical and co-created with producers.

According to Dr Rothmann, they have been privileged to work in a space that supports producers and protects crops through applied plant disease management strategies. While high-value crops often attract attention due to export markets, the grain that feed the nation forms the backbone of food security. As part of their new research, Dr Rothman and the research team are currently contributing to the Sorghum Cluster Initiative's pre-breeding programme, where they have screened 160 accessions for diseases to support future cultivar development. 

They are also going to explore how both emerging and commercial farmers will adopt these new cultivars. She is actively seeking collaborators in sociology/psychology or similar fields to better understand farmers’ decision-making. They are developing a plant disease dashboard to map disease occurrences across South Africa – an effort aligned with the Plant Health (Phytosanitary) Act 35 of 2024 to help guide appropriate disease risk categorisation. In the long term, concludes Dr Rothmann, they hope to establish a diagnostic hub for central South Africa in partnership with Agricultural Research Council-Grain Crops to strengthen local disease identification and support producers in real time.

News Archive

Death may come in adorable little packages
2015-03-23

The main host of the Lassa virus is the Natal Mulimammate mouse.

Photo: Supplied

Postdoctoral researcher, Abdon Atangana, of the Institute for Groundwater Studies at the university recently published an article online about the Lassa Haemorrhagic fever in the Natural Computing Applications Forum. In addition to the terminal transmissible sickness recognised as Ebola haemorrhagic fever, there is another strain called Lassa haemorrhagic fever.

The disease is classified under the arenaviridae virus family. The first outbreaks of the disease were observed in Nigeria, Liberia, Sierra Leone, and the Central African Republic. However, it was first described in 1969 in the town of Lassa, in Borno State, Nigeria.

The main host of the Lassa virus is the Natal Mulimammate mouse, an animal indigenous to most of Sub-Saharan Africa. The contamination in humans characteristically takes place through exposure to animal excrement through the respiratory or gastrointestinal tracts.

Mouthfuls of air containing tiny particle of infective material are understood to be the most noteworthy way of exposure. It is also possible to acquire the infection through broken skin or mucous membranes that are directly exposed to the infective material.

“The aim of my research was to propose a novel mathematical equation used to describe the spread of the illness amongst pregnant women in West Africa. To achieve this, I used my newly-proposed derivative with fractional order called beta-derivative. Since none of the commonly used integral transform could be used to derive the solution of the proposed model, I proposed a new integral transform called Atangana-Transform, and used it, together with some iterative technique, to derive the solution of the model.

“My numerical simulations show that the disease is as deadly amongst pregnant women as Ebola,” Abdon said.

Abdon’s research was submitted to one of Springer’s top-tier journals with an impact factor 1.78. The paper was accepted and published February 2015.

Read more about Abdon’s research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept