Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2025 | Story André Damons | Photo Supplied
Dr Lisa Rothmann
Dr Lisa Rothmann, a plant disease epidemiologist from the University of the Free State (UFS), has been nominated in the TW Kambule-NSTF Award: Emerging Researcher category for this year’s NSTF-South32 Awards.

Dr Lisa Rothmann, a plant disease epidemiologist from the University of the Free State (UFS) who was nominated in the TW Kambule-NSTF Award: Emerging Researcher category for this year’s NSTF-South32 Awards, says that the nomination is a reminder that service through science matters.

“I am humbled by the nomination. For me, it reflects not just individual recognition, but also the shared effort of the team of postgraduate academics, research assistants, partners, and farmers with whom I've had the privilege to work with. It is affirming to see plant pathology and field-based research recognised in this way; it highlights the consistent (hard) work we do to make a meaningful contribution to agriculture and to serve the grain industry and farmers,” says Dr Rothmann. 

She was nominated by Grain South Africa (Grain SA), with whom she has been working closely since 2018 to contribute research that aligns with the organisation’s mission to strengthen the grain sector. They play a key role in supporting sustainable grain production and farmer development. 

Dr Rothmann, who is one of eight UFS researchers and a research team nominated for the NSTF-South32 Awards – also known as the ‘Science Oscars’ – is nominated for her contribution to interdisciplinary, team-based research to develop practical solutions for plant diseases in order to protect crops and empower communities. 

 

Motivation to keep growing

The Senior Lecturer in the Department of Plant Sciences within the Faculty of Natural and Agricultural Sciences (NAS) says that while she is proud of the work she has done, she sees this recognition as a team effort. Says Dr Rothmann: “It motivates me to keep growing as a researcher, rooted in impact and integrity. I’m not a prolific peer-reviewed publisher; my academic record includes 10 journal articles and one book chapter, but I have written around 50 popular articles – often as a solo author, in collaboration with postgraduates and peers.” 

“These pieces translate plant pathology topics such as the Sclerotinia life cycle, disease surveillance, and management into accessible information for producers and the public. To me, this nomination is a symbol that making a meaningful impact doesn't only come from journal impact factors. This nomination has reminded me that building a career in academia is a relay, not a race, and that lasting impact comes from investing in others.”

As a plant disease epidemiologist, she specialises in field pathology – an area of plant pathology that explores how disease epidemics in crops develop, spread, and can be effectively managed within agricultural systems. Their work centres on understanding and managing Sclerotinia diseases in oilseed and protein crops such as canola, soybean, and sunflower, as well as disease surveillance in key grain crops including dry bean, sorghum, and sunflower.

 

New research

After participating in the US-based National Sclerotinia Initiative in 2017, she was inspired to establish a South African Sclerotinia Research Network with the support of Grain SA, creating a platform for researcher collaboration, farmer engagement, and the development of on-farm management strategies. Over time, explains Dr Rothmann, their research has expanded to include cultivar screening, national disease surveys, fungicide registration trials, and the development of disease-assessment tools. More recently, they have embedded sociological surveys into sorghum disease work to better understand farmers’ knowledge and needs, ensuring that research remains practical and co-created with producers.

According to Dr Rothmann, they have been privileged to work in a space that supports producers and protects crops through applied plant disease management strategies. While high-value crops often attract attention due to export markets, the grain that feed the nation forms the backbone of food security. As part of their new research, Dr Rothman and the research team are currently contributing to the Sorghum Cluster Initiative's pre-breeding programme, where they have screened 160 accessions for diseases to support future cultivar development. 

They are also going to explore how both emerging and commercial farmers will adopt these new cultivars. She is actively seeking collaborators in sociology/psychology or similar fields to better understand farmers’ decision-making. They are developing a plant disease dashboard to map disease occurrences across South Africa – an effort aligned with the Plant Health (Phytosanitary) Act 35 of 2024 to help guide appropriate disease risk categorisation. In the long term, concludes Dr Rothmann, they hope to establish a diagnostic hub for central South Africa in partnership with Agricultural Research Council-Grain Crops to strengthen local disease identification and support producers in real time.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept