Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 May 2025 | Story Martinette Brits | Photo Kaleidoscope Studios
Prof Hendrik Swart
Prof Hendrik Swart from the UFS Department of Physics was recently recognised by the Golden Key Honour Society Southern Africa as one of South Africa’s 300 most influential leaders.

Prof Hendrik Swart from the University of the Free State (UFS) Department of Physics was recently honoured at the Golden Key Honour Society Southern Africa’s Black Tie Gala Event, held on 23 May 2025. The event celebrated 300 of South Africa’s most influential leaders across academia, industry, government, and the financial sector.

Prof Swart, who is an NRF B1-rated researcher and currently also holds the SARChI Research Chair in Solid-state Luminescent and Advanced Materials (2023-2027), described the recognition as both meaningful and affirming at this stage of his academic journey.

“Being recognised by such a prestigious organisation is a meaningful acknowledgment of my academic efforts and personal dedication,” he says. “It was a moment of validation and inspiration, reminding me that hard work truly pays off.”

While the exact selection criteria were not publicly detailed, the emphasis was placed on academic excellence, scholarship, and leadership.

This is not Prof Swart’s first recognition from the Golden Key Honour Society. In 2012, the UFS student chapter awarded him honorary membership for his contributions as a mentor and supervisor – an early nod to his lasting impact on student success.

“The student chapter here on campus gave me some recognition by awarding me honorary membership,” he recalled. “It meant a lot to me as a mentor.”

The gala itself offered more than accolades – it created a space for meaningful exchange. Prof Swart reflected warmly on reconnecting with one of his former students from the early 2000s, calling it a highlight of the evening.

Looking ahead, Prof Swart welcomed the society’s plans to continue this initiative across the country.

“This was the first time they had an event like this, but more are expected to follow. I see it as a good initiative to mingle with other sectors in South Africa.”

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept