Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 May 2025 | Story Martinette Brits | Photo Kaleidoscope Studios
Prof Hendrik Swart
Prof Hendrik Swart from the UFS Department of Physics was recently recognised by the Golden Key Honour Society Southern Africa as one of South Africa’s 300 most influential leaders.

Prof Hendrik Swart from the University of the Free State (UFS) Department of Physics was recently honoured at the Golden Key Honour Society Southern Africa’s Black Tie Gala Event, held on 23 May 2025. The event celebrated 300 of South Africa’s most influential leaders across academia, industry, government, and the financial sector.

Prof Swart, who is an NRF B1-rated researcher and currently also holds the SARChI Research Chair in Solid-state Luminescent and Advanced Materials (2023-2027), described the recognition as both meaningful and affirming at this stage of his academic journey.

“Being recognised by such a prestigious organisation is a meaningful acknowledgment of my academic efforts and personal dedication,” he says. “It was a moment of validation and inspiration, reminding me that hard work truly pays off.”

While the exact selection criteria were not publicly detailed, the emphasis was placed on academic excellence, scholarship, and leadership.

This is not Prof Swart’s first recognition from the Golden Key Honour Society. In 2012, the UFS student chapter awarded him honorary membership for his contributions as a mentor and supervisor – an early nod to his lasting impact on student success.

“The student chapter here on campus gave me some recognition by awarding me honorary membership,” he recalled. “It meant a lot to me as a mentor.”

The gala itself offered more than accolades – it created a space for meaningful exchange. Prof Swart reflected warmly on reconnecting with one of his former students from the early 2000s, calling it a highlight of the evening.

Looking ahead, Prof Swart welcomed the society’s plans to continue this initiative across the country.

“This was the first time they had an event like this, but more are expected to follow. I see it as a good initiative to mingle with other sectors in South Africa.”

News Archive

From wheat protein to perfect pizza
2017-09-26

Description: Phd Read more Tags: Barend Wentzel, Department of Plant Sciences, plant breeding, proteins, Agricultural Research Council 

Barend Wentzel received his PhD at the Department
of Plant Sciences during the university’s
winter graduation ceremony.
He is pictured here with Prof Maryke Labuschagne,
professor in Plant Breeding at the UFS.
Photo: Charl Devenish

Barend Wentzel, an alumnus of the University of the Free State’s Department of Plant Sciences, is passionate about plant breeding. 

He literally eats and lives wheat proteins. In 1989 he initiated a breeding programme on arum lilies. “This breeding programme is at an advanced stage,” he said. Besides reading, playing the piano and accordion, Barend, due to the nature of his research at the Agricultural Research Council, also experiments with different types of ciabatta recipes made from sour dough. “I usually make my own pizza on Saturday evenings,” he said.

He is working at the Agricultural Research Council – Small Grain (ARC-SG) at the Wheat Quality Laboratory where he established a Cereal Chemistry Laboratory.

Complexity of flour quality

He explains that the focus of his research is on wheat protein composition. “The research conducted for my PhD study explains the complexity of flour quality to a certain extent, and it further emphasises the influence of the environment and genetic composition on selected baking characteristics. 

“Wheat protein can be divided into different types of protein fractions. These protein fractions contribute differently to dough properties and baking quality and the expression is affected by different components in the environment, including locality, rainfall and temperature. 

“Protein content alone does, however, not explain the variation in baking quality parameters, such as mixing time, dough strength and extensibility, and loaf volume.

“Several methods can be applied to quantify the different protein fractions. I am using high-performance liquid-chromatography (HPLC). The procedure entails the separation of a wheat protein extract through a column with chromatographic packing material. The injected sample is pumped through the column (known as the stationary phase) with a solvent (known as the mobile phase). The specific procedure, size-exclusion high-performance liquid-chromatography (SE-HPLC), is also used by the university’s Department of Plant Breeding, as well as in several international Cereal Chemistry Laboratories,” said Barend.

Dough strength and to loaf volume
“One of the highlights from the study was the positive contribution of the albumin and globulin protein fractions to dough strength and to loaf volume. The findings were wheat cultivar specific and the growing environment influenced the expression. The contribution of these protein fractions was much larger than previously reported for South African wheat cultivars,” said Barend. 
“Previous reports indicated that these protein fractions had a non-specific contribution to the gluten network during dough formation. The findings from this PhD justify further research on albumins and globulin proteins.” 

The Cereal Chemistry Laboratory at ARC-SG is involved in postgraduate student training under Barend’s guidance. He serves as co-promoter for several MSc and PhD students. He is also a collaborator on an international project with the International Maize and Wheat Improvement Centre (CIMMYT) in Mexico. Barend is furthermore working on improving wheat quality for processing and health purposes as a member of the expert working group of the International Wheat Initiative. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept