Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 May 2025 | Story Martinette Brits | Photo Kaleidoscope Studios
Prof Hendrik Swart
Prof Hendrik Swart from the UFS Department of Physics was recently recognised by the Golden Key Honour Society Southern Africa as one of South Africa’s 300 most influential leaders.

Prof Hendrik Swart from the University of the Free State (UFS) Department of Physics was recently honoured at the Golden Key Honour Society Southern Africa’s Black Tie Gala Event, held on 23 May 2025. The event celebrated 300 of South Africa’s most influential leaders across academia, industry, government, and the financial sector.

Prof Swart, who is an NRF B1-rated researcher and currently also holds the SARChI Research Chair in Solid-state Luminescent and Advanced Materials (2023-2027), described the recognition as both meaningful and affirming at this stage of his academic journey.

“Being recognised by such a prestigious organisation is a meaningful acknowledgment of my academic efforts and personal dedication,” he says. “It was a moment of validation and inspiration, reminding me that hard work truly pays off.”

While the exact selection criteria were not publicly detailed, the emphasis was placed on academic excellence, scholarship, and leadership.

This is not Prof Swart’s first recognition from the Golden Key Honour Society. In 2012, the UFS student chapter awarded him honorary membership for his contributions as a mentor and supervisor – an early nod to his lasting impact on student success.

“The student chapter here on campus gave me some recognition by awarding me honorary membership,” he recalled. “It meant a lot to me as a mentor.”

The gala itself offered more than accolades – it created a space for meaningful exchange. Prof Swart reflected warmly on reconnecting with one of his former students from the early 2000s, calling it a highlight of the evening.

Looking ahead, Prof Swart welcomed the society’s plans to continue this initiative across the country.

“This was the first time they had an event like this, but more are expected to follow. I see it as a good initiative to mingle with other sectors in South Africa.”

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept