Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 May 2025 | Story André Damons | Photo Supplied
Prof Martin Nyaga
Prof Martin Nyaga, Full Professor in the Division of Virology and Head of the Next Generation Sequencing Unit (UFS-NGS Unit) at the University of the Free State.

Prof Martin Nyaga, an NRF B-Rated Full Professor in the Division of Virology and Head of the Next Generation Sequencing (UFS-NGS) Unit at the University of the Free State (UFS), has been selected as one of the cohort II fellows of the prestigious Calestous Juma Science Leadership Fellowship

Prof Nyaga, who is one of 12 individuals from six African countries (Ethiopia, Ghana, Kenya, Malawi, South Africa, and Zambia) selected to this cohort, says he is profoundly honoured. Through the prestigious fellowship, inspired by Professor Juma’s visionary legacy, he envisions advancing Africa’s capacity to combat infectious diseases by developing robust, mNGS-based surveillance systems that detect and characterise emerging pathogens early enough.

“The opportunity to join a cohort of exceptional African scientists, united by a shared commitment to addressing global health challenges, is both humbling and inspiring. I feel a deep sense of responsibility to uphold the fellowship’s mission of fostering sustainable development through cutting-edge research and policy engagement, particularly in the context of my work on genomic disease surveillance. 

“I am deeply inspired by Professor Calestous Juma’s legacy of harnessing science for sustainable development, and I am committed to embodying his optimism and interdisciplinary approach. The fellowship represents a transformative platform to advance scientific innovation and leadership in Africa. I would like to extend my gratitude to the Gates Foundation for this opportunity, and I look forward to contributing to a transformative era of African scientific leadership,” says Prof Nyaga.

 

Advantages of the Fellowship

The Calestous Juma Science Leadership Fellowship focuses on bringing together accomplished innovators to form a community of global health opinion shapers and influencers. The programme provides targeted professional development to support fellows as they expand their networks, amplify their voices, and continue to build and strengthen a dynamic, resilient research & development (R&D) ecosystem that changes the lives of people living not only in Africa but around the world.

Among the new cohort are experts in virology (including HIV and rota), bacteriology (including TB and strep), immunology, malaria, modelling, maternal immunisation, epidemiology, chemistry, drug discovery and development, vaccine discovery, clinical trials, and controlled human infection models to name just a few examples. 

According to Prof Nyaga, Director of a WHO Collaborating Centre for Vaccine Preventable Diseases (VPD) Surveillance and Pathogen Genomics, selection for the Fellowship is a rigorous and competitive process, designed to identify African scientists with exceptional research portfolios and leadership potential. Candidates are typically invited based on their established track record in transformative science, as well as their ability to anchor health and R&D initiatives within their communities. Successful applicants are evaluated for their scientific excellence, interdisciplinary networks, and commitment to mentoring the next generation of African scientists, aligning with the fellowship’s holistic view of leadership.

The NRF B3-rated scientist says he is eager to engage with the fellowship’s vibrant community of scientists from multiple African countries, fostering collaborations that amplify our collective impact on global health. He anticipates benefiting from the fellowship’s non-scientific training in communication, policy engagement, and institution strengthening. Participating in networking opportunities will broaden his perspectives and strengthen his capacity to drive innovative solutions in Africa’s genomic R&D ecosystem.

“I believe my work in pathogen surveillance research using genomics, aligns closely with the fellowship's objectives. As a fellow, I bring a wealth of experience in leading multi-country projects, establishing regional collaborations, and fostering capacity development through training and mentorship. 

“In addition, my ongoing work at the UFS-NGS Unit, including projects on enteric and respiratory virus surveillance, vaccine monitoring and efficacy using next generation sequencing, which will enrich discussions on public health. Conversely, the fellowship will enhance my scientific development by providing advanced training in leadership and policy advocacy, enabling me to translate research findings into actionable health policies. This synergy will elevate my capacity to lead transformative R&D initiatives and mentor future African scientists.” 

 

Contributing to the betterment of people 

Prof Nyaga believes his research on vaccine efficacy and metagenomics of gut and respiratory virome will contribute to the betterment of not only Africans, but also people around the world by informing targeted interventions in vaccine efficacy monitoring and development. This research will also contribute to the reduction of morbidity and mortality applicable to enteric and respiratory infections in vulnerable populations. 

Furthermore, he explains, the fellowship’s emphasis on networking and policy engagement will amplify these efforts, enabling him to advocate for evidence-based health policies across Africa. Globally, their collective work as Calestous Juma Science Leadership fellows will strengthen the R&D ecosystem, fostering innovation that addresses pandemic preparedness and other health challenges. By building resilient scientific communities, the fellowship will contribute to sustainable development, improving lives in Africa and beyond.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept