Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 May 2025 | Story André Damons | Photo Supplied
Prof Martin Nyaga
Prof Martin Nyaga, Full Professor in the Division of Virology and Head of the Next Generation Sequencing Unit (UFS-NGS Unit) at the University of the Free State.

Prof Martin Nyaga, an NRF B-Rated Full Professor in the Division of Virology and Head of the Next Generation Sequencing (UFS-NGS) Unit at the University of the Free State (UFS), has been selected as one of the cohort II fellows of the prestigious Calestous Juma Science Leadership Fellowship

Prof Nyaga, who is one of 12 individuals from six African countries (Ethiopia, Ghana, Kenya, Malawi, South Africa, and Zambia) selected to this cohort, says he is profoundly honoured. Through the prestigious fellowship, inspired by Professor Juma’s visionary legacy, he envisions advancing Africa’s capacity to combat infectious diseases by developing robust, mNGS-based surveillance systems that detect and characterise emerging pathogens early enough.

“The opportunity to join a cohort of exceptional African scientists, united by a shared commitment to addressing global health challenges, is both humbling and inspiring. I feel a deep sense of responsibility to uphold the fellowship’s mission of fostering sustainable development through cutting-edge research and policy engagement, particularly in the context of my work on genomic disease surveillance. 

“I am deeply inspired by Professor Calestous Juma’s legacy of harnessing science for sustainable development, and I am committed to embodying his optimism and interdisciplinary approach. The fellowship represents a transformative platform to advance scientific innovation and leadership in Africa. I would like to extend my gratitude to the Gates Foundation for this opportunity, and I look forward to contributing to a transformative era of African scientific leadership,” says Prof Nyaga.

 

Advantages of the Fellowship

The Calestous Juma Science Leadership Fellowship focuses on bringing together accomplished innovators to form a community of global health opinion shapers and influencers. The programme provides targeted professional development to support fellows as they expand their networks, amplify their voices, and continue to build and strengthen a dynamic, resilient research & development (R&D) ecosystem that changes the lives of people living not only in Africa but around the world.

Among the new cohort are experts in virology (including HIV and rota), bacteriology (including TB and strep), immunology, malaria, modelling, maternal immunisation, epidemiology, chemistry, drug discovery and development, vaccine discovery, clinical trials, and controlled human infection models to name just a few examples. 

According to Prof Nyaga, Director of a WHO Collaborating Centre for Vaccine Preventable Diseases (VPD) Surveillance and Pathogen Genomics, selection for the Fellowship is a rigorous and competitive process, designed to identify African scientists with exceptional research portfolios and leadership potential. Candidates are typically invited based on their established track record in transformative science, as well as their ability to anchor health and R&D initiatives within their communities. Successful applicants are evaluated for their scientific excellence, interdisciplinary networks, and commitment to mentoring the next generation of African scientists, aligning with the fellowship’s holistic view of leadership.

The NRF B3-rated scientist says he is eager to engage with the fellowship’s vibrant community of scientists from multiple African countries, fostering collaborations that amplify our collective impact on global health. He anticipates benefiting from the fellowship’s non-scientific training in communication, policy engagement, and institution strengthening. Participating in networking opportunities will broaden his perspectives and strengthen his capacity to drive innovative solutions in Africa’s genomic R&D ecosystem.

“I believe my work in pathogen surveillance research using genomics, aligns closely with the fellowship's objectives. As a fellow, I bring a wealth of experience in leading multi-country projects, establishing regional collaborations, and fostering capacity development through training and mentorship. 

“In addition, my ongoing work at the UFS-NGS Unit, including projects on enteric and respiratory virus surveillance, vaccine monitoring and efficacy using next generation sequencing, which will enrich discussions on public health. Conversely, the fellowship will enhance my scientific development by providing advanced training in leadership and policy advocacy, enabling me to translate research findings into actionable health policies. This synergy will elevate my capacity to lead transformative R&D initiatives and mentor future African scientists.” 

 

Contributing to the betterment of people 

Prof Nyaga believes his research on vaccine efficacy and metagenomics of gut and respiratory virome will contribute to the betterment of not only Africans, but also people around the world by informing targeted interventions in vaccine efficacy monitoring and development. This research will also contribute to the reduction of morbidity and mortality applicable to enteric and respiratory infections in vulnerable populations. 

Furthermore, he explains, the fellowship’s emphasis on networking and policy engagement will amplify these efforts, enabling him to advocate for evidence-based health policies across Africa. Globally, their collective work as Calestous Juma Science Leadership fellows will strengthen the R&D ecosystem, fostering innovation that addresses pandemic preparedness and other health challenges. By building resilient scientific communities, the fellowship will contribute to sustainable development, improving lives in Africa and beyond.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept