Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2025 | Story André Damons | Photo Supplied
Prof Wynand Goosen
Prof Wynand Goosen, Professor and Lead for One Health in the Department of Microbiology and Biochemistry at the University of the Free State was nominated in the TW Kambule-NSTF Award: Researcher category of the 2024/25 NSTF-South32 Awards.

Being nominated for a ‘Science Oscar’ is exciting and validates nominees’ efforts, particularly in a field as challenging and essential as infectious diseases, for which they are recognised at the highest level. 

This is according to Prof Wynand Goosen, Professor and Lead for One Health in the Department of Microbiology and Biochemistry at the University of the Free State (UFS). He was nominated in the TW Kambule-NSTF Award: Researcher category of the 2024/25 NSTF-South32 Awards for his landmark discovery of Mycobacterium bovis infection in humans in South Africa – the first confirmed cases in the country. 

Prof Goosen, who previously won the NSTF-South32 Emerging Researcher Award, says the nomination is a powerful affirmation of the impact that focused, interdisciplinary research can have. It reflects not only his personal commitment but also the dedication of a talented and hard-working team. “I am honoured and humbled to be nominated. It is also a testament to the support and vision of UFS, particularly as we position ourselves as leaders in One Health research in South Africa,” he says. 

 

Focus of research 

He was nominated by Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation, and Prof Paul Oberholster, Dean for the Faculty of Natural and Agricultural Sciences (NAS) at the UFS, and Prof Nico Gey van Pittius and Prof Elmi Muller from Stellenbosch University (US). The NSTF Awards, known as the ‘Science Oscars’of SA, honour, reward, celebrate, profile and promote outstanding contributions to science, engineering and technology (SET) and innovation in South Africa.

“The nomination,” Prof Goosen continues, “recognises our work in the field of zoonotic tuberculosis (TB) and other emerging infectious diseases at the human-animal-environment interface. Our research focuses on the molecular detection and characterisation of pathogenic mycobacteria in wildlife, livestock, and human populations, with the aim of informing better surveillance, diagnostics, and control strategies — particularly in high-risk ecosystems. This includes novel applications in wildlife TB surveillance and understanding the transmission dynamics between animals and people.”

 

Establishing a Kovsie One Health Research Unit

This research is critically important as South Africa continues to face a high burden of tuberculosis, including zoonotic TB, which often goes under-detected in rural and wildlife-rich areas. Understanding how these pathogens circulate between humans, animals, and the environment, explains Prof Goosen, is essential for effective disease control and to mitigate future pandemics. This work directly supports national health priorities, informs policy, and contributes to global strategies for One Health.

Prof Goosen and the team are in the process of laying the groundwork for the establishment of a Kovsie One Health Research Unit, which will serve as a collaborative platform for research spanning human, animal, and environmental health. One of their key projects involves expanding TB and AMR surveillance in wildlife-livestock-human interfaces, using cutting-edge diagnostics and genomic tools. They are also initiating partnerships with industry and international institutions to address emerging zoonoses and environmental pathogens in a transdisciplinary manner.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept