Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2025 | Story André Damons | Photo Supplied
Prof Wynand Goosen
Prof Wynand Goosen, Professor and Lead for One Health in the Department of Microbiology and Biochemistry at the University of the Free State was nominated in the TW Kambule-NSTF Award: Researcher category of the 2024/25 NSTF-South32 Awards.

Being nominated for a ‘Science Oscar’ is exciting and validates nominees’ efforts, particularly in a field as challenging and essential as infectious diseases, for which they are recognised at the highest level. 

This is according to Prof Wynand Goosen, Professor and Lead for One Health in the Department of Microbiology and Biochemistry at the University of the Free State (UFS). He was nominated in the TW Kambule-NSTF Award: Researcher category of the 2024/25 NSTF-South32 Awards for his landmark discovery of Mycobacterium bovis infection in humans in South Africa – the first confirmed cases in the country. 

Prof Goosen, who previously won the NSTF-South32 Emerging Researcher Award, says the nomination is a powerful affirmation of the impact that focused, interdisciplinary research can have. It reflects not only his personal commitment but also the dedication of a talented and hard-working team. “I am honoured and humbled to be nominated. It is also a testament to the support and vision of UFS, particularly as we position ourselves as leaders in One Health research in South Africa,” he says. 

 

Focus of research 

He was nominated by Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation, and Prof Paul Oberholster, Dean for the Faculty of Natural and Agricultural Sciences (NAS) at the UFS, and Prof Nico Gey van Pittius and Prof Elmi Muller from Stellenbosch University (US). The NSTF Awards, known as the ‘Science Oscars’of SA, honour, reward, celebrate, profile and promote outstanding contributions to science, engineering and technology (SET) and innovation in South Africa.

“The nomination,” Prof Goosen continues, “recognises our work in the field of zoonotic tuberculosis (TB) and other emerging infectious diseases at the human-animal-environment interface. Our research focuses on the molecular detection and characterisation of pathogenic mycobacteria in wildlife, livestock, and human populations, with the aim of informing better surveillance, diagnostics, and control strategies — particularly in high-risk ecosystems. This includes novel applications in wildlife TB surveillance and understanding the transmission dynamics between animals and people.”

 

Establishing a Kovsie One Health Research Unit

This research is critically important as South Africa continues to face a high burden of tuberculosis, including zoonotic TB, which often goes under-detected in rural and wildlife-rich areas. Understanding how these pathogens circulate between humans, animals, and the environment, explains Prof Goosen, is essential for effective disease control and to mitigate future pandemics. This work directly supports national health priorities, informs policy, and contributes to global strategies for One Health.

Prof Goosen and the team are in the process of laying the groundwork for the establishment of a Kovsie One Health Research Unit, which will serve as a collaborative platform for research spanning human, animal, and environmental health. One of their key projects involves expanding TB and AMR surveillance in wildlife-livestock-human interfaces, using cutting-edge diagnostics and genomic tools. They are also initiating partnerships with industry and international institutions to address emerging zoonoses and environmental pathogens in a transdisciplinary manner.

News Archive

Researchers receive study grant for research into Congo Fever
2015-03-10

UFS researchers will be contributing significantly to the search for a vaccine against the deadly tick-borne disease known as Congo Fever.

Prof Felicity Burt from the Department of Medical Microbiology and Virology was recently awarded a research grant by the National Health Laboratory Service (NHLS) to study candidate vaccines for Crimean-Congo heamorrhagic fever (CCHF) virus and other arboviruses.

Arboviruses are viruses transmitted by mosquitoes, ticks, or other arthropods.

Prof Burt is an internationally-recognised expert on the Crimean-Congo haemorrhagic fever (CCHF). The Crimean-Congo haemorrhagic fever (CCHF) virus is a tick-borne virus that is associated with severe haemorrhagic disease in South Africa and other parts of Africa, Asia, and eastern Europe. Her interests focus on medically significant viruses that are transmitted by ticks and mosquitoes. Her research group is involved in determining the immune responses that are induced by different viral proteins.

Crimean-Congo haemorrhagic fever (CCHF) virus, a tick- borne virus found in Africa, Asia, the Balkans, and eastern Europe, causes severe viral haemorrhagic fever outbreaks.

Although a number of tick species are capable of becoming infected with CCHF virus, ticks of the genus Hyalomma, commonly referred to in SA as the “bont-legged ticks”, are the principal vector. The ticks have distinctive brown and white bands on their legs.

In February 1981, the first case of CCHF was recognised in South Africa (SA). To date, there have been nearly 200 cases of CCHF infection in SA with a 20% fatality rate. The majority of cases occurring in SA were in patients from the Northern Cape and Free State provinces.

“The funding that has been awarded will be used to profile immune responses against CCHF viral proteins, and investigate mechanisms and strategies to enhance these immune responses. We hope that the study will contribute knowledge towards the development of a vaccine against this medically significant virus.”

For more information or enquiries contact news@ufs.ac.za.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept