Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2025 | Story André Damons | Photo Supplied
Prof Wynand Goosen
Prof Wynand Goosen, Professor and Lead for One Health in the Department of Microbiology and Biochemistry at the University of the Free State was nominated in the TW Kambule-NSTF Award: Researcher category of the 2024/25 NSTF-South32 Awards.

Being nominated for a ‘Science Oscar’ is exciting and validates nominees’ efforts, particularly in a field as challenging and essential as infectious diseases, for which they are recognised at the highest level. 

This is according to Prof Wynand Goosen, Professor and Lead for One Health in the Department of Microbiology and Biochemistry at the University of the Free State (UFS). He was nominated in the TW Kambule-NSTF Award: Researcher category of the 2024/25 NSTF-South32 Awards for his landmark discovery of Mycobacterium bovis infection in humans in South Africa – the first confirmed cases in the country. 

Prof Goosen, who previously won the NSTF-South32 Emerging Researcher Award, says the nomination is a powerful affirmation of the impact that focused, interdisciplinary research can have. It reflects not only his personal commitment but also the dedication of a talented and hard-working team. “I am honoured and humbled to be nominated. It is also a testament to the support and vision of UFS, particularly as we position ourselves as leaders in One Health research in South Africa,” he says. 

 

Focus of research 

He was nominated by Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation, and Prof Paul Oberholster, Dean for the Faculty of Natural and Agricultural Sciences (NAS) at the UFS, and Prof Nico Gey van Pittius and Prof Elmi Muller from Stellenbosch University (US). The NSTF Awards, known as the ‘Science Oscars’of SA, honour, reward, celebrate, profile and promote outstanding contributions to science, engineering and technology (SET) and innovation in South Africa.

“The nomination,” Prof Goosen continues, “recognises our work in the field of zoonotic tuberculosis (TB) and other emerging infectious diseases at the human-animal-environment interface. Our research focuses on the molecular detection and characterisation of pathogenic mycobacteria in wildlife, livestock, and human populations, with the aim of informing better surveillance, diagnostics, and control strategies — particularly in high-risk ecosystems. This includes novel applications in wildlife TB surveillance and understanding the transmission dynamics between animals and people.”

 

Establishing a Kovsie One Health Research Unit

This research is critically important as South Africa continues to face a high burden of tuberculosis, including zoonotic TB, which often goes under-detected in rural and wildlife-rich areas. Understanding how these pathogens circulate between humans, animals, and the environment, explains Prof Goosen, is essential for effective disease control and to mitigate future pandemics. This work directly supports national health priorities, informs policy, and contributes to global strategies for One Health.

Prof Goosen and the team are in the process of laying the groundwork for the establishment of a Kovsie One Health Research Unit, which will serve as a collaborative platform for research spanning human, animal, and environmental health. One of their key projects involves expanding TB and AMR surveillance in wildlife-livestock-human interfaces, using cutting-edge diagnostics and genomic tools. They are also initiating partnerships with industry and international institutions to address emerging zoonoses and environmental pathogens in a transdisciplinary manner.

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept