Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 May 2025 | Story Precious Shamase | Photo Teboho Mositi
Motlalepula
Pictured: On the left, Prof Prince Ngobeni, Qwaqwa Campus Principal, with Motlalepula Tsotetsi, Principal of Maluti TVET College.

The University of the Free State (UFS) Qwaqwa Campus has formally cemented its commitment to regional engagement by handing over signed memoranda of understanding (MOUs) to key local stakeholders during a significant ceremony. The partnerships with Maluti TVET College, the HaMagriza’s Indigenous Restaurant and Co-working Hub, and the Agape Foundation signal a collaborative effort focused on enhancing education, fostering community upliftment, and driving regional development.

The handover, which took place in the Senate Hall of the UFS Qwaqwa Campus, was intentionally designed as a personal demonstration of the university’s dedication to building strong, enduring relationships. Prof Cias Tsotetsi, Vice-Principal: Academic and Research on the UFS Qwaqwa Campus, emphasised the significance of the face-to-face engagement.

“We chose not to simply email the signed MOUs,” explained Prof Tsotetsi. “We wanted to meet face-to-face and hand them over in person, because this is about building genuine, lasting relationships. These stakeholders align with the university’s vision of becoming a hub for research, a student-centred environment, and a regionally engaged institution.”

Representatives from each partner organisation expressed enthusiasm for the opportunities unlocked by these newly formalised agreements.

Motlalepula Tsotetsi, Principal of Maluti TVET College, hailed the MOU as a pivotal moment. “Although we have collaborated with various stakeholders in the past, this marks the first formal partnership with the University of the Free State. Given our proximity, it’s long overdue, and we welcome this development.”

Echoing this sentiment, HaMagriza Director, Sabata Lepele, highlighted the importance of mutual recognition and cooperation. “As Tom Ford wisely said, ‘Collaboration is the key to success.’ This partnership creates a shared space that benefits both the university and the broader community. We’re honoured to be part of it.” He further emphasised that this milestone was significant to their journey, embodying a synergy between academia and the community to achieve remarkable outcomes. Lepele expressed HaMagriza's commitment to fostering innovation, creativity, and community development through this collaboration, anticipating the co-creation of initiatives that will benefit both the university and the surrounding region. He also conveyed excitement about working together to share the unique culture and heritage of Qwaqwa.

Daniel Moloi, Director of the Agape Foundation, also warmly welcomed the formal partnership, expressing his organisation’s eagerness to collaborate with the UFS on initiatives designed to address pressing community challenges.

This ceremony marks a significant step forward in the UFS Qwaqwa Campus’ community engagement strategy, reaffirming its dedication to fostering inclusive development through strategic alliances within the local landscape. The university aspires to be a research-led, student-centred, and regionally engaged institution, viewing these partnerships as vital vehicles for achieving societal impact that extends beyond the continent.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept