Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 May 2025 | Story Tshepo Tsotetsi | Photo Tshepo Tsotetsi
Multilingualism stakeholder engagement session
Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation; guest speaker Prof Leketi Makalela; and Dr Nomalungelo Ngubane, Director of the UFS Academy for Multilingualism.

Multilingualism is not just a concept at the University of the Free State (UFS) – it is a growing practice, a challenge, and an opportunity all at once. This was made clear during a stakeholder engagement session on 7 May 2025, hosted by the Academy for Multilingualism at the UFS’s Bloemfontein Campus, where staff, academics, and strategic partners gathered to reflect on the university’s language journey.

In his reflections, the Deputy Vice-Chancellor for Research and Internationalisation, Prof Vasu Reddy, emphasised that, “Scholarly conversations such as these are not just simply intellectually important, but socially and politically, and it is critical to learn from each other, exchange ideas, and make change.” He described the Academy as a “novel intervention” and noted how engagements like this help “break silos that languages sometimes create” – a crucial step towards realising the promise of multilingualism and translanguaging in academic spaces.

 

Progress, challenges, and collective ownership

In her presentation, Dr Nomalungelo Ngubane, Director of the Academy for Multilingualism, provided an overview of the institutional language policy and its implementation status, now in its third year of a five-year plan. She highlighted key strides: the translation of 116 PhD abstracts into Sesotho, Afrikaans, and isiXhosa; the development of South African Sign Language terminology in psychology; and the training of 16 tutors in translanguaging, among others.

Dr Ngubane stressed the importance of shared ownership of the policy’s rollout. “It’s very important that the language policy is understood by all stakeholders. It’s a collective journey, and it becomes even more powerful when people own it and take it forward into their departments, faculties, and student spaces,” she said. While she acknowledged that meaningful development of African languages as academic mediums is costly and resource-intensive, she noted that small, deliberate steps are being taken.

 

Ubuntu translanguaging: rethinking the classroom

The keynote address was delivered by Prof Leketi Makalela, full professor and founding Director of the Hub for Multilingual Education and Literacies at the University of the Witwatersrand. A globally recognised scholar and the holder of the SARChI Chair in Advancing African Languages for Social Inclusion and Access, Prof Makalela added a powerful perspective rooted in research and teaching practice.

He began his address with a reflection: “I believe I landed on this little rock called Earth to ensure that human beings have deep access to the world in which they were born, and you can only be part of this greater world and make full sense of it through language.”

Later, he challenged the monolingual mindsets that dominate higher education. “People still want to treat languages as different entities, and that’s where the issue is. That’s where the education system is not aligning with the realities of multilinguality.” 

Prof Makalela said multilingual students face dual disadvantages: compromised epistemic access [access to knowledge systems] due to monolingual bias, and diminished identity affirmation. His response? Ubuntu translanguaging – a model that embraces cohabitation of languages and student-led meaning-making.

“It’s a misconception that the lecturer must translanguage,” he said. “It is the student who should translanguage. The lecturer should only facilitate and respect that internal process.”

He outlined a clear, three-step translanguaging teaching method:

• Pre-lesson: Activate prior learning and scaffold vocabulary and concepts.
• During lesson: Create space for multilingual thinking – allow students to write, reflect, and engage in their own languages.

• Post-lesson: Validate understanding, and open the classroom to diverse linguistic expressions.

Prof Makalela stressed that the real innovation lies in normalising these practices institution-wide. “Existing multilingual tutorials are useful, but real transformation happens when every lecturer opens up their lessons to multilingual engagement.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept