Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 May 2025 | Story Tshepo Tsotetsi | Photo Tshepo Tsotetsi
Multilingualism stakeholder engagement session
Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation; guest speaker Prof Leketi Makalela; and Dr Nomalungelo Ngubane, Director of the UFS Academy for Multilingualism.

Multilingualism is not just a concept at the University of the Free State (UFS) – it is a growing practice, a challenge, and an opportunity all at once. This was made clear during a stakeholder engagement session on 7 May 2025, hosted by the Academy for Multilingualism at the UFS’s Bloemfontein Campus, where staff, academics, and strategic partners gathered to reflect on the university’s language journey.

In his reflections, the Deputy Vice-Chancellor for Research and Internationalisation, Prof Vasu Reddy, emphasised that, “Scholarly conversations such as these are not just simply intellectually important, but socially and politically, and it is critical to learn from each other, exchange ideas, and make change.” He described the Academy as a “novel intervention” and noted how engagements like this help “break silos that languages sometimes create” – a crucial step towards realising the promise of multilingualism and translanguaging in academic spaces.

 

Progress, challenges, and collective ownership

In her presentation, Dr Nomalungelo Ngubane, Director of the Academy for Multilingualism, provided an overview of the institutional language policy and its implementation status, now in its third year of a five-year plan. She highlighted key strides: the translation of 116 PhD abstracts into Sesotho, Afrikaans, and isiXhosa; the development of South African Sign Language terminology in psychology; and the training of 16 tutors in translanguaging, among others.

Dr Ngubane stressed the importance of shared ownership of the policy’s rollout. “It’s very important that the language policy is understood by all stakeholders. It’s a collective journey, and it becomes even more powerful when people own it and take it forward into their departments, faculties, and student spaces,” she said. While she acknowledged that meaningful development of African languages as academic mediums is costly and resource-intensive, she noted that small, deliberate steps are being taken.

 

Ubuntu translanguaging: rethinking the classroom

The keynote address was delivered by Prof Leketi Makalela, full professor and founding Director of the Hub for Multilingual Education and Literacies at the University of the Witwatersrand. A globally recognised scholar and the holder of the SARChI Chair in Advancing African Languages for Social Inclusion and Access, Prof Makalela added a powerful perspective rooted in research and teaching practice.

He began his address with a reflection: “I believe I landed on this little rock called Earth to ensure that human beings have deep access to the world in which they were born, and you can only be part of this greater world and make full sense of it through language.”

Later, he challenged the monolingual mindsets that dominate higher education. “People still want to treat languages as different entities, and that’s where the issue is. That’s where the education system is not aligning with the realities of multilinguality.” 

Prof Makalela said multilingual students face dual disadvantages: compromised epistemic access [access to knowledge systems] due to monolingual bias, and diminished identity affirmation. His response? Ubuntu translanguaging – a model that embraces cohabitation of languages and student-led meaning-making.

“It’s a misconception that the lecturer must translanguage,” he said. “It is the student who should translanguage. The lecturer should only facilitate and respect that internal process.”

He outlined a clear, three-step translanguaging teaching method:

• Pre-lesson: Activate prior learning and scaffold vocabulary and concepts.
• During lesson: Create space for multilingual thinking – allow students to write, reflect, and engage in their own languages.

• Post-lesson: Validate understanding, and open the classroom to diverse linguistic expressions.

Prof Makalela stressed that the real innovation lies in normalising these practices institution-wide. “Existing multilingual tutorials are useful, but real transformation happens when every lecturer opens up their lessons to multilingual engagement.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept