Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 November 2025 | Story Tshepo Tsotetsi | Photo Stephen Collett
Economist of the Year
Reatile Seekoei (centre), UFS’s 2025 Economist of the Year, with representatives from Sanlam and Santam.

University of the Free State (UFS) BCom Finance student Reatile Seekoei has again claimed the top prize in the UFS’s second annual Economist of the Year competition.

The event, hosted on 31 October 2025 by the Department of Economics and Finance in the Faculty of Economic and Management Sciences (EMS), brought together UFS students, academics, and parents at the Bloemfontein Campus to celebrate emerging talent in the field. The group was joined by sponsors from Sanlam and Santam.

The competition has quickly become a highlight on the academic calendar, offering students an opportunity to bridge classroom theory with real-world practice. It challenges them to apply their understanding of economic trends, policy analysis, and data interpretation to forecast future developments, helping them grow from students into confident, career-ready economists. The event also recognised the top-performing students in the department – from first-year level to master’s – in celebration of academic excellence.

 

Turning theory into practice

According to Prof Johan Coetzee, Head of the Department of Economics and Finance, the competition aims to give students a platform to apply what they learn in class to real-world scenarios. “The purpose of it is to expose students to macroeconomic indicators and to apply their forecasting skills,” he explained. “It forces students to read up on the news, to know what’s happening in the world around them, and to articulate their understanding clearly. In a world increasingly driven by AI, we need humans – we need economists – to set the narrative. This prepares them for the world of work.”

Prof Coetzee added that the judging focuses on both technical and communication skills, with 40% of the score based on forecasting accuracy and 60% on presentation and articulation. “Economists must not only understand the numbers, but also communicate what those numbers mean,” he said.

 

From conceptual thinker to confident economist

For Seekoei, winning the competition again was both a challenge and a statement of growth.

“I came into this competition for the second time with one goal: to defend my title,” he said. “To win again is thrilling because I had to deliver more than I did last year. It pushed me to grow from a more conceptualised economist into a mature one who can apply indicators and present economically well.”

His presentation impressed the judges with its structured approach. Seekoei built a framework that combined a baseline analysis of South Africa’s economy with an interpretation of leading indicators, inflation trends and monetary-policy direction. He credited his success to the guidance of his lecturers and his belief in self-discipline. “The key to my success is believing in myself,” he said. “It was me against myself. I had to deliver better than what I did last year, and that confidence made all the difference.”

The competition also saw outstanding performances from other finalists, including BCom student Malek Suhail as the first runner-up and BCom Law student Lunghile Rivombo as the second runner-up, both of whom impressed the judges and their peers with their analytical skill and innovative approach – a testament to the faculty’s interdisciplinary strength.

Prof Coetzee expressed gratitude to Sanlam and Santam for sponsoring the competition and helping to make the initiative possible. Their support, he noted, plays a vital role in nurturing future economists who are both analytically strong and socially aware.

As the department looks ahead to next year’s competition, Seekoei’s back-to-back wins set a new benchmark – one that will no doubt inspire his peers to challenge themselves, think critically, and forecast with both precision and passion.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept