Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 November 2025 | Story Tshepo Tsotetsi | Photo Stephen Collett
Economist of the Year
Reatile Seekoei (centre), UFS’s 2025 Economist of the Year, with representatives from Sanlam and Santam.

University of the Free State (UFS) BCom Finance student Reatile Seekoei has again claimed the top prize in the UFS’s second annual Economist of the Year competition.

The event, hosted on 31 October 2025 by the Department of Economics and Finance in the Faculty of Economic and Management Sciences (EMS), brought together UFS students, academics, and parents at the Bloemfontein Campus to celebrate emerging talent in the field. The group was joined by sponsors from Sanlam and Santam.

The competition has quickly become a highlight on the academic calendar, offering students an opportunity to bridge classroom theory with real-world practice. It challenges them to apply their understanding of economic trends, policy analysis, and data interpretation to forecast future developments, helping them grow from students into confident, career-ready economists. The event also recognised the top-performing students in the department – from first-year level to master’s – in celebration of academic excellence.

 

Turning theory into practice

According to Prof Johan Coetzee, Head of the Department of Economics and Finance, the competition aims to give students a platform to apply what they learn in class to real-world scenarios. “The purpose of it is to expose students to macroeconomic indicators and to apply their forecasting skills,” he explained. “It forces students to read up on the news, to know what’s happening in the world around them, and to articulate their understanding clearly. In a world increasingly driven by AI, we need humans – we need economists – to set the narrative. This prepares them for the world of work.”

Prof Coetzee added that the judging focuses on both technical and communication skills, with 40% of the score based on forecasting accuracy and 60% on presentation and articulation. “Economists must not only understand the numbers, but also communicate what those numbers mean,” he said.

 

From conceptual thinker to confident economist

For Seekoei, winning the competition again was both a challenge and a statement of growth.

“I came into this competition for the second time with one goal: to defend my title,” he said. “To win again is thrilling because I had to deliver more than I did last year. It pushed me to grow from a more conceptualised economist into a mature one who can apply indicators and present economically well.”

His presentation impressed the judges with its structured approach. Seekoei built a framework that combined a baseline analysis of South Africa’s economy with an interpretation of leading indicators, inflation trends and monetary-policy direction. He credited his success to the guidance of his lecturers and his belief in self-discipline. “The key to my success is believing in myself,” he said. “It was me against myself. I had to deliver better than what I did last year, and that confidence made all the difference.”

The competition also saw outstanding performances from other finalists, including BCom student Malek Suhail as the first runner-up and BCom Law student Lunghile Rivombo as the second runner-up, both of whom impressed the judges and their peers with their analytical skill and innovative approach – a testament to the faculty’s interdisciplinary strength.

Prof Coetzee expressed gratitude to Sanlam and Santam for sponsoring the competition and helping to make the initiative possible. Their support, he noted, plays a vital role in nurturing future economists who are both analytically strong and socially aware.

As the department looks ahead to next year’s competition, Seekoei’s back-to-back wins set a new benchmark – one that will no doubt inspire his peers to challenge themselves, think critically, and forecast with both precision and passion.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept