Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 November 2025 | Story Tshepo Tsotetsi | Photo Stephen Collett
Economist of the Year
Reatile Seekoei (centre), UFS’s 2025 Economist of the Year, with representatives from Sanlam and Santam.

University of the Free State (UFS) BCom Finance student Reatile Seekoei has again claimed the top prize in the UFS’s second annual Economist of the Year competition.

The event, hosted on 31 October 2025 by the Department of Economics and Finance in the Faculty of Economic and Management Sciences (EMS), brought together UFS students, academics, and parents at the Bloemfontein Campus to celebrate emerging talent in the field. The group was joined by sponsors from Sanlam and Santam.

The competition has quickly become a highlight on the academic calendar, offering students an opportunity to bridge classroom theory with real-world practice. It challenges them to apply their understanding of economic trends, policy analysis, and data interpretation to forecast future developments, helping them grow from students into confident, career-ready economists. The event also recognised the top-performing students in the department – from first-year level to master’s – in celebration of academic excellence.

 

Turning theory into practice

According to Prof Johan Coetzee, Head of the Department of Economics and Finance, the competition aims to give students a platform to apply what they learn in class to real-world scenarios. “The purpose of it is to expose students to macroeconomic indicators and to apply their forecasting skills,” he explained. “It forces students to read up on the news, to know what’s happening in the world around them, and to articulate their understanding clearly. In a world increasingly driven by AI, we need humans – we need economists – to set the narrative. This prepares them for the world of work.”

Prof Coetzee added that the judging focuses on both technical and communication skills, with 40% of the score based on forecasting accuracy and 60% on presentation and articulation. “Economists must not only understand the numbers, but also communicate what those numbers mean,” he said.

 

From conceptual thinker to confident economist

For Seekoei, winning the competition again was both a challenge and a statement of growth.

“I came into this competition for the second time with one goal: to defend my title,” he said. “To win again is thrilling because I had to deliver more than I did last year. It pushed me to grow from a more conceptualised economist into a mature one who can apply indicators and present economically well.”

His presentation impressed the judges with its structured approach. Seekoei built a framework that combined a baseline analysis of South Africa’s economy with an interpretation of leading indicators, inflation trends and monetary-policy direction. He credited his success to the guidance of his lecturers and his belief in self-discipline. “The key to my success is believing in myself,” he said. “It was me against myself. I had to deliver better than what I did last year, and that confidence made all the difference.”

The competition also saw outstanding performances from other finalists, including BCom student Malek Suhail as the first runner-up and BCom Law student Lunghile Rivombo as the second runner-up, both of whom impressed the judges and their peers with their analytical skill and innovative approach – a testament to the faculty’s interdisciplinary strength.

Prof Coetzee expressed gratitude to Sanlam and Santam for sponsoring the competition and helping to make the initiative possible. Their support, he noted, plays a vital role in nurturing future economists who are both analytically strong and socially aware.

As the department looks ahead to next year’s competition, Seekoei’s back-to-back wins set a new benchmark – one that will no doubt inspire his peers to challenge themselves, think critically, and forecast with both precision and passion.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept