Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 November 2025 | Story Tshepo Tsotetsi | Photo Stephen Collett
Economist of the Year
Reatile Seekoei (centre), UFS’s 2025 Economist of the Year, with representatives from Sanlam and Santam.

University of the Free State (UFS) BCom Finance student Reatile Seekoei has again claimed the top prize in the UFS’s second annual Economist of the Year competition.

The event, hosted on 31 October 2025 by the Department of Economics and Finance in the Faculty of Economic and Management Sciences (EMS), brought together UFS students, academics, and parents at the Bloemfontein Campus to celebrate emerging talent in the field. The group was joined by sponsors from Sanlam and Santam.

The competition has quickly become a highlight on the academic calendar, offering students an opportunity to bridge classroom theory with real-world practice. It challenges them to apply their understanding of economic trends, policy analysis, and data interpretation to forecast future developments, helping them grow from students into confident, career-ready economists. The event also recognised the top-performing students in the department – from first-year level to master’s – in celebration of academic excellence.

 

Turning theory into practice

According to Prof Johan Coetzee, Head of the Department of Economics and Finance, the competition aims to give students a platform to apply what they learn in class to real-world scenarios. “The purpose of it is to expose students to macroeconomic indicators and to apply their forecasting skills,” he explained. “It forces students to read up on the news, to know what’s happening in the world around them, and to articulate their understanding clearly. In a world increasingly driven by AI, we need humans – we need economists – to set the narrative. This prepares them for the world of work.”

Prof Coetzee added that the judging focuses on both technical and communication skills, with 40% of the score based on forecasting accuracy and 60% on presentation and articulation. “Economists must not only understand the numbers, but also communicate what those numbers mean,” he said.

 

From conceptual thinker to confident economist

For Seekoei, winning the competition again was both a challenge and a statement of growth.

“I came into this competition for the second time with one goal: to defend my title,” he said. “To win again is thrilling because I had to deliver more than I did last year. It pushed me to grow from a more conceptualised economist into a mature one who can apply indicators and present economically well.”

His presentation impressed the judges with its structured approach. Seekoei built a framework that combined a baseline analysis of South Africa’s economy with an interpretation of leading indicators, inflation trends and monetary-policy direction. He credited his success to the guidance of his lecturers and his belief in self-discipline. “The key to my success is believing in myself,” he said. “It was me against myself. I had to deliver better than what I did last year, and that confidence made all the difference.”

The competition also saw outstanding performances from other finalists, including BCom student Malek Suhail as the first runner-up and BCom Law student Lunghile Rivombo as the second runner-up, both of whom impressed the judges and their peers with their analytical skill and innovative approach – a testament to the faculty’s interdisciplinary strength.

Prof Coetzee expressed gratitude to Sanlam and Santam for sponsoring the competition and helping to make the initiative possible. Their support, he noted, plays a vital role in nurturing future economists who are both analytically strong and socially aware.

As the department looks ahead to next year’s competition, Seekoei’s back-to-back wins set a new benchmark – one that will no doubt inspire his peers to challenge themselves, think critically, and forecast with both precision and passion.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept