Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2025 | Story Onthatile Tikoe | Photo Supplied
CartZA
The CartZA team (from the left): Richard Molefe (CEO), Kenny Netshitanzwani (COO), Tshepo Lencoe (CMO), and Lehlohonolo Molaba Duncan (CTO), UFS students driving innovation through technology.

In an inspiring display of innovation and collaboration, a group of University of the Free State (UFS) students have reimagined campus convenience through CartZA, a student-developed food delivery app that is transforming how students access meals and services. What began as a late-night idea during exam season has grown into one of the university’s proudest examples of student entrepreneurship.

 

From late-night hunger to a campus-wide solution

The idea for CartZA was born in November 2024, when Kenny Netshitanzwani, now Chief Operations Officer, and Tshepo Lencoe, now Chief Marketing Officer, found themselves waiting endlessly in queues at the Thakaneng Bridge during a late-night study session. “We waited nearly 40 minutes just to get food and thought, what if students could order in advance and collect without waiting?” recalls Netshitanzwani.

By December 2024, the two self-taught developers began building a website prototype from their homes. They tested the concept through an online poll that received an overwhelming 97% approval from 425 students. On 27 February 2025, they launched the website during Ms Winnie Sereeco’s entrepreneurship lecture, processing ten orders on the first day and more than a hundred by the end of the semester.

Their pitch attracted Lehlohonolo Molaba Duncan, now Chief Technology Officer – a BCom Finance student and systems architect who joined to develop the mobile app. Later, he introduced Richard Molefe, a BCom Honours in Finance student with strong corporate and leadership experience, who became Chief Executive Officer, completing the CartZA founding team.

 

Turning queues into clicks

By August 2025, the team had launched a fully functional app available on Google Play and the Apple App Store. Within weeks, it had surpassed 1 200 downloads, now exceeding 2 000. The app allows users to order ahead for collection or opt for delivery, with CartZA’s slogan, ‘Add to Cart and Cut the Queue,’ capturing its mission to simplify student life through technology and convenience.

 

Overcoming challenges and gaining recognition

The journey was not without challenges. The team self-funded the project through allowances and side hustles, even borrowing a fellow student’s MacBook, affectionately known as Comfort the Barber, to publish on Apple’s platform. Their breakthrough came when The Deli restaurant joined the platform, expanding access to more outlets.

Their innovation has since gained recognition across the province. CartZA was named among the Free State Top 10 in the Youth Innovation Challenge, hosted by the Young African Entrepreneurs Institute and Absa Bank, and will represent the province at the national finals in November. The team also received the Student Entrepreneurial Excellence Award at the 2025 Executive Director of Student Affairs (EDSA) Prestige Awards.

Beyond convenience, CartZA now employs 15 active student delivery partners and has 30 more registered on standby across Bloemfontein, empowering peers while reshaping campus life.

 

Looking ahead

With plans to expand to other universities, CartZA aims to become a nationwide lifestyle platform connecting students, service providers, and opportunities. “Our journey shows that innovation starts with identifying the needs around you,” says Molefe. “CartZA is proof that when students collaborate and persist, they can create meaningful change.”

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept