Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2025 | Story Onthatile Tikoe | Photo Supplied
CartZA
The CartZA team (from the left): Richard Molefe (CEO), Kenny Netshitanzwani (COO), Tshepo Lencoe (CMO), and Lehlohonolo Molaba Duncan (CTO), UFS students driving innovation through technology.

In an inspiring display of innovation and collaboration, a group of University of the Free State (UFS) students have reimagined campus convenience through CartZA, a student-developed food delivery app that is transforming how students access meals and services. What began as a late-night idea during exam season has grown into one of the university’s proudest examples of student entrepreneurship.

 

From late-night hunger to a campus-wide solution

The idea for CartZA was born in November 2024, when Kenny Netshitanzwani, now Chief Operations Officer, and Tshepo Lencoe, now Chief Marketing Officer, found themselves waiting endlessly in queues at the Thakaneng Bridge during a late-night study session. “We waited nearly 40 minutes just to get food and thought, what if students could order in advance and collect without waiting?” recalls Netshitanzwani.

By December 2024, the two self-taught developers began building a website prototype from their homes. They tested the concept through an online poll that received an overwhelming 97% approval from 425 students. On 27 February 2025, they launched the website during Ms Winnie Sereeco’s entrepreneurship lecture, processing ten orders on the first day and more than a hundred by the end of the semester.

Their pitch attracted Lehlohonolo Molaba Duncan, now Chief Technology Officer – a BCom Finance student and systems architect who joined to develop the mobile app. Later, he introduced Richard Molefe, a BCom Honours in Finance student with strong corporate and leadership experience, who became Chief Executive Officer, completing the CartZA founding team.

 

Turning queues into clicks

By August 2025, the team had launched a fully functional app available on Google Play and the Apple App Store. Within weeks, it had surpassed 1 200 downloads, now exceeding 2 000. The app allows users to order ahead for collection or opt for delivery, with CartZA’s slogan, ‘Add to Cart and Cut the Queue,’ capturing its mission to simplify student life through technology and convenience.

 

Overcoming challenges and gaining recognition

The journey was not without challenges. The team self-funded the project through allowances and side hustles, even borrowing a fellow student’s MacBook, affectionately known as Comfort the Barber, to publish on Apple’s platform. Their breakthrough came when The Deli restaurant joined the platform, expanding access to more outlets.

Their innovation has since gained recognition across the province. CartZA was named among the Free State Top 10 in the Youth Innovation Challenge, hosted by the Young African Entrepreneurs Institute and Absa Bank, and will represent the province at the national finals in November. The team also received the Student Entrepreneurial Excellence Award at the 2025 Executive Director of Student Affairs (EDSA) Prestige Awards.

Beyond convenience, CartZA now employs 15 active student delivery partners and has 30 more registered on standby across Bloemfontein, empowering peers while reshaping campus life.

 

Looking ahead

With plans to expand to other universities, CartZA aims to become a nationwide lifestyle platform connecting students, service providers, and opportunities. “Our journey shows that innovation starts with identifying the needs around you,” says Molefe. “CartZA is proof that when students collaborate and persist, they can create meaningful change.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept