Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2025 | Story Onthatile Tikoe | Photo Supplied
CartZA
The CartZA team (from the left): Richard Molefe (CEO), Kenny Netshitanzwani (COO), Tshepo Lencoe (CMO), and Lehlohonolo Molaba Duncan (CTO), UFS students driving innovation through technology.

In an inspiring display of innovation and collaboration, a group of University of the Free State (UFS) students have reimagined campus convenience through CartZA, a student-developed food delivery app that is transforming how students access meals and services. What began as a late-night idea during exam season has grown into one of the university’s proudest examples of student entrepreneurship.

 

From late-night hunger to a campus-wide solution

The idea for CartZA was born in November 2024, when Kenny Netshitanzwani, now Chief Operations Officer, and Tshepo Lencoe, now Chief Marketing Officer, found themselves waiting endlessly in queues at the Thakaneng Bridge during a late-night study session. “We waited nearly 40 minutes just to get food and thought, what if students could order in advance and collect without waiting?” recalls Netshitanzwani.

By December 2024, the two self-taught developers began building a website prototype from their homes. They tested the concept through an online poll that received an overwhelming 97% approval from 425 students. On 27 February 2025, they launched the website during Ms Winnie Sereeco’s entrepreneurship lecture, processing ten orders on the first day and more than a hundred by the end of the semester.

Their pitch attracted Lehlohonolo Molaba Duncan, now Chief Technology Officer – a BCom Finance student and systems architect who joined to develop the mobile app. Later, he introduced Richard Molefe, a BCom Honours in Finance student with strong corporate and leadership experience, who became Chief Executive Officer, completing the CartZA founding team.

 

Turning queues into clicks

By August 2025, the team had launched a fully functional app available on Google Play and the Apple App Store. Within weeks, it had surpassed 1 200 downloads, now exceeding 2 000. The app allows users to order ahead for collection or opt for delivery, with CartZA’s slogan, ‘Add to Cart and Cut the Queue,’ capturing its mission to simplify student life through technology and convenience.

 

Overcoming challenges and gaining recognition

The journey was not without challenges. The team self-funded the project through allowances and side hustles, even borrowing a fellow student’s MacBook, affectionately known as Comfort the Barber, to publish on Apple’s platform. Their breakthrough came when The Deli restaurant joined the platform, expanding access to more outlets.

Their innovation has since gained recognition across the province. CartZA was named among the Free State Top 10 in the Youth Innovation Challenge, hosted by the Young African Entrepreneurs Institute and Absa Bank, and will represent the province at the national finals in November. The team also received the Student Entrepreneurial Excellence Award at the 2025 Executive Director of Student Affairs (EDSA) Prestige Awards.

Beyond convenience, CartZA now employs 15 active student delivery partners and has 30 more registered on standby across Bloemfontein, empowering peers while reshaping campus life.

 

Looking ahead

With plans to expand to other universities, CartZA aims to become a nationwide lifestyle platform connecting students, service providers, and opportunities. “Our journey shows that innovation starts with identifying the needs around you,” says Molefe. “CartZA is proof that when students collaborate and persist, they can create meaningful change.”

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept