Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 November 2025 | Story Azil Coertzen | Photo Supplied
Intervarsity Brew
The winning Kovsie Brew team behind their award-winning Hazy IPA at the 2025 Intervarsitybrew™ competition. From the left: Monique Greyling (Anton Paar), Andrew de Groot (Fermentis), Dr Vaughn Swart (mentor), Hendre Heymans, Martin Visser, Joni Muller, Tyla Baker, and team captain Azil Coertzen.

The University of the Free State (UFS) showcased its innovation-driven student talent as the Kovsie Brew team secured multiple awards at the 2025 Intervarsitybrew™: Brewing and Tasting Challenge – South Africa’s premier student brewing competition.

Co-hosted by the Central University of Technology (CUT) and the Beer Association of South Africa (BASA), the prestigious annual event brings together student brewers from universities across the country to demonstrate creativity, technical skill, and a passion for craft beer.

 

A year of dedication, experimentation, and on-campus brewing innovation

The three-day competition, held in Bloemfontein from 23 to 25 October 2025, featured participants from 17 universities and a chef school, highlighting its growing national reputation. Each team was challenged to brew six different beers and design an original label, while taking part in presentations, sensory training, blind tastings conducted by qualified judges, and technical sessions led by industry experts. The Intervarsitybrew™ also promotes responsible drinking while celebrating scientific knowledge, creativity, and collaboration.

Representing the UFS, the Kovsie Brew team, consisting of eight student brewers – Casey van Baalen, Jana Bischoff, Ruan Jacobs, Tyla Baker, Joni Muller, Martin Visser, Hendre Heymans, and team captain Azil Coertzen – was guided by mentors Dr Vaughn Swart, Dr Christopher Rothmann, and Prof Errol Cason. The team worked throughout the year to refine their craft and push boundaries in student brewing.

In 2025, the Kovsie team brewed an impressive 14 beers, experimenting with different styles and flavour profiles. They hosted tasting sessions with mentors and peers, attended the Clarens Beer Festival for industry feedback, assisted with the brewing of 500 litres of pale ale at the UFS Paradys Experimental Farm, and actively participated in Free State Fermenters meetings – where some members earned awards based on Beer Judge Certification Programme (BJCP) standards.

 

Award-winning brews with standout creativity and technical excellence

For this year’s Intervarsitybrew™, the team presented six competition beers:
  • Hazy IPA (IPA category) – A hop-forward, tropical brew that won first place in its category.
  • British Ordinary Bitter (Summer category) – A refreshing, malt-driven ale showcasing classic English brewing.
  • Coffee Imperial Stout (Aged category) – A dark, flavourful stout praised for its smooth finish.
  • Margarista Gose (Wild category) – A citrus-inspired, tart beer earning second place in the African Wild Ale category.
  • Jalapeño Sour (Sour category) – A daring blend of heat and acidity, taking third place in the Sour/Fruit Beer category.
  • Czech Lager (Lager category) – A clean, crisp lager representing traditional European brewing.

Their standout performance earned them three major accolades:
  • Best IPA – Hazy IPA (sponsored by Fermentis and Anton Paar)
  • Second place: African Wild Ale – Margarista Gose (sponsored by SAB and Heineken Beverages)
  • Third place: Sour/Fruit Beer – Jalapeño Sour (sponsored by Shimadzu)

Reflecting on the team’s success, mentor Dr Vaughn Swart expressed his pride: “After the disappointment of a total loss last year, their determination and creativity truly shone through. Watching them transform into success has been deeply inspiring. Their growth, not just as brewers but as passionate, resilient individuals, reminds me why mentorship and shared passion matter so much. This year’s wins are a testament to the team’s perseverance and to the spirit of Kovsie excellence.”

The Kovsie Brew Team extended its gratitude to its supporters – the Department of Microbiology and Biochemistry, the Centre for Mineral Biogeochemistry (CMBG), and LiquidCulture Yeast – as well as the Intervarsitybrew™ organisers for continuing to foster a vibrant brewing culture at the UFS.

The UFS proudly celebrates the Kovsie Brew team’s achievements, which reflect the institution’s commitment to nurturing innovation, collaboration, and scientific excellence – brewed to perfection, the Kovsie way.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept