Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2025 | Story Andile Mbowana | Photo Supplied
PhD candidates at the 2025 National 3MT Competition, hosted at the University of the Free State.

The University of the Free State Centre for Graduate Support (CGS) hosted the 2025 National Three-Minute Thesis (3MT) Competition on 24 October in the Albert Wessels Auditorium, bringing together some of South Africa’s brightest PhD minds under one roof. The annual event, which has become a highlight on the national academic calendar, challenges doctoral candidates from universities across the country to present their complex research in just three minutes, using language accessible to a non-specialist audience. 

This year’s competition drew impressive presentations from top scholars representing various disciplines – from health sciences and agriculture to humanities – all showcasing the depth and diversity of South Africa’s research landscape.

Delivering the keynote address, Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, reflected on The Essence of Postgraduate Studies and Success in South Africa. He emphasised that postgraduate research plays a critical role in shaping innovation and addressing the country’s most pressing challenges. “As postgraduates, you represent a powerful tool of transformation, equity, and innovation, and every thesis is a story of resilience and a long journey of research,” he said. Prof Reddy also talked about how “competitions like the 3MT not only celebrate research excellence but also teach scholars how to communicate their ideas to inspire real-world impact,” praising the competition for opening opportunities for postgraduate scholars. 

The University of the Free State was represented by two candidates, Rentia du Plessis from the Faculty of The Humanities, who presented her 3MT title, Exploring Instructional Communication Strategic for Holistic Student Development, and Naquita Fernandes from the Faculty of Economic and Management Sciences, with her 3MT title, Triggering Online Review Generation Behaviour

Other universities, such as the Nelson Mandela University, Unisa, the University of KwaZulu-Natal, the University of the Western Cape, the University of Johannesburg, and the University of Pretoria, were also present.

After a series of captivating presentations, Robinah Nakawunde from Stellenbosch University claimed the top prize. Representing the Faculty of Medicine and Health Sciences, her presentation titled, Cured but Not Healed: Uncovering the Lung’s Struggles after TB, captured the attention of both the judges and the audience. Her research sheds light on how pulmonary tuberculosis continues to affect lung function even after successful treatment, highlighting the need for improved post-TB health-care interventions.

The first runner-up position went to Aaron Harvey from the University of Pretoria’s Faculty of Natural and Agricultural Sciences, whose research explores how avocado plants fight root rot disease using RNA interference mechanisms. His presentation, titled How Avocado Cells Fight Against the Root Rot Disease Caused by Phytophthora cinnamomi, Using RNAi Gatekeepers, impressed the judges with its clarity and scientific depth.

Morgan Lee from the University of Cape Town’s Faculty of Humanities took home the second runner-up prize. Her presentation, Locked In: The Hidden Barriers to Sustainable Agriculture, tackled the challenges facing South Africa’s commercial grain sector in transitioning towards more sustainable practices, offering insights that bridge environmental and social considerations.

The 2025 3MT National Competition once again demonstrated the power of concise, impactful communication in research. As the curtain closed, it was evident that South Africa’s future of research and innovation remains in capable hands, ones that can not only investigate deeply, but also explain passionately

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept