Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2025 | Story Andile Mbowana | Photo Supplied
PhD candidates at the 2025 National 3MT Competition, hosted at the University of the Free State.

The University of the Free State Centre for Graduate Support (CGS) hosted the 2025 National Three-Minute Thesis (3MT) Competition on 24 October in the Albert Wessels Auditorium, bringing together some of South Africa’s brightest PhD minds under one roof. The annual event, which has become a highlight on the national academic calendar, challenges doctoral candidates from universities across the country to present their complex research in just three minutes, using language accessible to a non-specialist audience. 

This year’s competition drew impressive presentations from top scholars representing various disciplines – from health sciences and agriculture to humanities – all showcasing the depth and diversity of South Africa’s research landscape.

Delivering the keynote address, Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS, reflected on The Essence of Postgraduate Studies and Success in South Africa. He emphasised that postgraduate research plays a critical role in shaping innovation and addressing the country’s most pressing challenges. “As postgraduates, you represent a powerful tool of transformation, equity, and innovation, and every thesis is a story of resilience and a long journey of research,” he said. Prof Reddy also talked about how “competitions like the 3MT not only celebrate research excellence but also teach scholars how to communicate their ideas to inspire real-world impact,” praising the competition for opening opportunities for postgraduate scholars. 

The University of the Free State was represented by two candidates, Rentia du Plessis from the Faculty of The Humanities, who presented her 3MT title, Exploring Instructional Communication Strategic for Holistic Student Development, and Naquita Fernandes from the Faculty of Economic and Management Sciences, with her 3MT title, Triggering Online Review Generation Behaviour

Other universities, such as the Nelson Mandela University, Unisa, the University of KwaZulu-Natal, the University of the Western Cape, the University of Johannesburg, and the University of Pretoria, were also present.

After a series of captivating presentations, Robinah Nakawunde from Stellenbosch University claimed the top prize. Representing the Faculty of Medicine and Health Sciences, her presentation titled, Cured but Not Healed: Uncovering the Lung’s Struggles after TB, captured the attention of both the judges and the audience. Her research sheds light on how pulmonary tuberculosis continues to affect lung function even after successful treatment, highlighting the need for improved post-TB health-care interventions.

The first runner-up position went to Aaron Harvey from the University of Pretoria’s Faculty of Natural and Agricultural Sciences, whose research explores how avocado plants fight root rot disease using RNA interference mechanisms. His presentation, titled How Avocado Cells Fight Against the Root Rot Disease Caused by Phytophthora cinnamomi, Using RNAi Gatekeepers, impressed the judges with its clarity and scientific depth.

Morgan Lee from the University of Cape Town’s Faculty of Humanities took home the second runner-up prize. Her presentation, Locked In: The Hidden Barriers to Sustainable Agriculture, tackled the challenges facing South Africa’s commercial grain sector in transitioning towards more sustainable practices, offering insights that bridge environmental and social considerations.

The 2025 3MT National Competition once again demonstrated the power of concise, impactful communication in research. As the curtain closed, it was evident that South Africa’s future of research and innovation remains in capable hands, ones that can not only investigate deeply, but also explain passionately

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept