Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 October 2025 | Story Lacea Loader

Academic activities at the University of the Free State (UFS) will continue on Monday 20 October 2025.

The Executive Committee of the university appreciates the understanding and cooperation of all staff and students during this time. 

The academic calendar has been amended to ensure the successful completion of the 2025 academic year. 

 

1. Academic calendar

The end of the fourth quarter will be postponed, and the start of the main end-of-year examinations will be moved from 3 November to 10 November 2025.

This decision applies to all students, except final-year students in the Faculty of Health Sciences.

Final-year students in the Faculty of Health Sciences will commence their year-end examinations on 3 November 2025 to enable them to graduate in December 2025 and begin their community service/internships in January 2026.

Information to support the continuation and completion of lectures and assessments will be communicated by the respective lecturers.

Our students are encouraged to consult their lecturers or programme coordinators with any queries.

 

2. Qwaqwa Campus

The Qwaqwa Campus will reopen on Monday 20 October 2025, with staff and students returning as follows:

  • Monday 20 October 2025: University Estates staff
  • Tuesday 21 October 2025: Academic staff and professional and support services staff
  • Wednesday 22 October 2025: Residence students
  • Thursday 23 October 2025: Resumption of all academic activities

The university extends its appreciation to staff and students for their patience, commitment, and resilience.

 

Issued by:
Lacea Loader 
Senior Director: Communication and Marketing
University of the Free State 

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept