Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 October 2025 | Story Lacea Loader

Academic activities at the University of the Free State (UFS) will continue on Monday 20 October 2025.

The Executive Committee of the university appreciates the understanding and cooperation of all staff and students during this time. 

The academic calendar has been amended to ensure the successful completion of the 2025 academic year. 

 

1. Academic calendar

The end of the fourth quarter will be postponed, and the start of the main end-of-year examinations will be moved from 3 November to 10 November 2025.

This decision applies to all students, except final-year students in the Faculty of Health Sciences.

Final-year students in the Faculty of Health Sciences will commence their year-end examinations on 3 November 2025 to enable them to graduate in December 2025 and begin their community service/internships in January 2026.

Information to support the continuation and completion of lectures and assessments will be communicated by the respective lecturers.

Our students are encouraged to consult their lecturers or programme coordinators with any queries.

 

2. Qwaqwa Campus

The Qwaqwa Campus will reopen on Monday 20 October 2025, with staff and students returning as follows:

  • Monday 20 October 2025: University Estates staff
  • Tuesday 21 October 2025: Academic staff and professional and support services staff
  • Wednesday 22 October 2025: Residence students
  • Thursday 23 October 2025: Resumption of all academic activities

The university extends its appreciation to staff and students for their patience, commitment, and resilience.

 

Issued by:
Lacea Loader 
Senior Director: Communication and Marketing
University of the Free State 

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept