Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 October 2025 | Story Andre Damons | Photo Supplied
Down Syndrome

As South Africa marks Down Syndrome Awareness Day on 20 October, it is worth pausing to celebrate the incredible children who light up our lives and the parents who walk this journey with them. Down Syndrome is the most common chromosomal disorder, causing intellectual disability. 

According to Down Syndrome South Africa, one in every 600 babies born in developing countries has Down syndrome. Data on the prevalence in South Africa remain limited, however, earlier estimates suggest about one in every 770 births. Although Down syndrome is not curable, children with the condition have many abilities and strengths. It is, therefore, vital that families engage in interventions that help children reach their full developmental potential. 

Dr Olive Khaliq, Senior Lecturer in the Department of Paediatrics and Child Health at the University of the Free State (UFS), says most interventions rightly focus on the child, but there is growing recognition that parents are just as central to their children's progress. The home is the first and most consistent environment where development occurs. Parenting a child with Down syndrome can, however, be influenced by the social context. 

 

Empowering programme 

“In South Africa, cultural beliefs and community attitudes often shape how families cope and seek support. Some parents fear disclosing the child's disability due to fear of being judged or the long-standing myth that Down syndrome is a curse or a punishment.  

“This can lead to isolation or delays in accessing interventions that could make a difference. Empowering parents with knowledge and practical tools are therefore essential, not only for their children's development, but also for their own well-being,” she says. 

A remarkable example of such empowerment is the Developmental Resource Stimulation Programme (DRSP), a home-based programme designed by Dr Dorothy Russell from the Department of Paediatrics and Child Health. The DRSP, designed for children with Down syndrome from birth to 42 months, combines structured play and guided parent-child interaction, helping parents to stimulate their child's cognitive, fine-motor, gross motor, and language development using everyday household items such as teaspoons, tumblers, and face cloths. Previous quantitative research shows that children whose parents participated in the programme made measurable developmental gains. 

 

Feedback from parents 

In 2024, Drs Khaliq and Russell, together with Prof Gladys Kigozi-Male, Associate Professor in the UFS Centre for Health Systems Research and Development, received an interdisciplinary grant from the UFS to explore the experiences of parents regarding the DRSP. They engaged 31 parents of children with Down syndrome in individual interviews and focus group discussions. According to Kigozi-Male, findings revealed overwhelmingly positive experiences. Parents reported feeling more capable and more connected with their children. “One parent shared: ‘It [the DRSP] helped me to become closer to her, and to know her better, and to know what she’s capable of … my child can do anything that we wanted her to do …  she’s capable of everything, and that if we follow this programme, she [will] become very strong and capable,” said Prof Kigozi-Male.   

Another parent reflected on the knowledge gained: “… the knowledge that I didn’t have before …  as a mother of a Down syndrome baby – but for any mother …  I have learned so much, and it is what any mother should know …” Parents also noted visible improvements in their children’s development, particularly in muscle strength, crawling and walking with one parent explaining “It really changed a lot …  my child's neck was not okay, so the programme taught us how to train the neck muscle. Even when they started walking or crawling, it really helped a lot …” 

Another parent highlighted how the programme strengthened their confidence as caregivers saying “… I don't think we would have come this far without the programme because it helped us understand my child … Without the programme I don't think he would have been so strong because we wouldn't have known how to help him ...”

The DRSP, explains Dr Russell, is just one example of what can happen when parents are treated as active partners rather than passive recipients of care. Going forward, it is important that parents' voices continue to shape how interventions are designed and delivered. Their lived experiences are powerful sources of knowledge on what works in real settings.  

“As we commemorate Down Syndrome Awareness Day, let's remember that inclusion begins with understanding, and understanding grows when we listen to families, parents, and children who remind us that every life matters,” concluded Dr Khaliq. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept