Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 October 2025 | Story Precious Shamase | Photo MAFF (Music Art, Food and Fashion) Photography
Roots of Wisdom
Pictured from the left: Princess Shoeshoe Tsiame Mopeli; Prof Cias Tsotetsi, Qwaqwa Campus Vice-Principal: Academic and Research; Prof Lerato Seleteng-Kose from the National University of Lesotho; and Dr Komi Afassinou, Senior Lecturer in the UFS Department of Mathematics and Applied Mathematics.

History was made at the University of the Free State (UFS) Qwaqwa Campus with the groundbreaking convergence of the Dr TK Mopeli Indigenous Knowledge System (IKS) Memorial Lecture and Symposium. This joint inaugural event, held under the compelling theme, Roots of Wisdom: Integrating Indigenous Knowledge in Science and Education: The Legacy of Dr TK Mopeli, served as a powerful platform to bridge the academic sphere with the lived wisdom of local communities.

 

Core vision: From commemoration to critical engagement

The planning team’s core vision was clear: to create a unifying platform where the scholarship of IKS could meaningfully intersect with the lived experience. Held on 19 September 2025, the combined memorial lecture and symposium moved beyond a mere commemoration of Dr Mopeli's enduring legacy. It aimed to be a critical engagement that actively pushed the boundaries of contemporary discourse.

The theme itself was a call to action. It sought to highlight the resilience, innovation, and relevance of IKS in solving modern problems, ensuring that indigenous perspectives not only survive but actively shape scientific research, educational curricula, and community development. This focus linked the region’s heritage to future possibilities, echoing Dr Mopeli’s own dedication to education and self-reliance.

 

Wisdom beyond the lecture hall: Inclusive participation

Recognising that indigenous knowledge is deeply rooted in lived experience – as highlighted by keynote speaker Prof Lerato Seleteng-Kose’s presentation on the role of IKS in scientific innovation in Lesotho – the planning team prioritised authentic and inclusive participation. Their strategy deliberately mixed celebrated academics with vital community voices. This involved engaging traditional leaders, community elders, and local IKS practitioners alongside university faculty. 

To bridge the gap between abstract discourse and grassroots practice, the event created a space where storytelling, rituals, and oral traditions were given value equal to formal scholarly papers, including the message from Princess Shoeshoe ‘Tsiame’ Mopeli on cultivating self-reliance. Sessions utilised local languages, most notably Sesotho, to ensure that the knowledge holders felt fully represented and heard.

Dr Elias Nyefolo Malete described Dr Mopeli as a humble leader, passionate about the advancement of his people and the preservation of the Basotho nation. in his address on An Ideational Analysis and Integration of African Folktales in Science, Technology, and Education, he further emphasised the need to treat indigenous narratives not as relics, but as dynamic sources of knowledge for education.

 

The road ahead: Actionable outcomes

The symposium was not designed to be an echo chamber. The planning team identified several specific, measurable deliverables aimed at tracking the long-term impact of the discussions:

Policy Influence: Generating recommendations to be shared with local and national structures to positively influence cultural heritage and education policies.

Curriculum Development: Actively informing the integration of IKS into university curricula across various disciplines, ensuring that future students engage with both the theoretical and applied dimensions of indigenous knowledge.

Community Initiatives: Establishing partnerships to support grassroots-level, community-led projects in areas vital to Dr Mopeli's vision, such as sustainable agriculture, health practices, and cultural preservation.

To ensure that these discussions translate into tangible action, a monitoring framework is being put in place. This includes creating a public repository of all presentations and community contributions and establishing follow-up meetings between the university and community stakeholders.

One of the members of the planning team, Prof Puseletso Mofokeng, concluded, “The 2025 Symposium was a historic moment, transforming the late Dr TK Mopeli's Memorial Lecture into a living, dynamic platform. It reaffirmed that indigenous knowledge is not merely a preserved artefact of the past, but a vital, evolving resource capable of guiding sustainable development and shaping a self-reliant future for the region. The event laid the groundwork for Dr Mopeli’s dream to continue living, not just in memory, but in action, policy, and education.” 

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept