Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 October 2025 | Story Precious Shamase | Photo MAFF (Music Art, Food and Fashion) Photography
Roots of Wisdom
Pictured from the left: Princess Shoeshoe Tsiame Mopeli; Prof Cias Tsotetsi, Qwaqwa Campus Vice-Principal: Academic and Research; Prof Lerato Seleteng-Kose from the National University of Lesotho; and Dr Komi Afassinou, Senior Lecturer in the UFS Department of Mathematics and Applied Mathematics.

History was made at the University of the Free State (UFS) Qwaqwa Campus with the groundbreaking convergence of the Dr TK Mopeli Indigenous Knowledge System (IKS) Memorial Lecture and Symposium. This joint inaugural event, held under the compelling theme, Roots of Wisdom: Integrating Indigenous Knowledge in Science and Education: The Legacy of Dr TK Mopeli, served as a powerful platform to bridge the academic sphere with the lived wisdom of local communities.

 

Core vision: From commemoration to critical engagement

The planning team’s core vision was clear: to create a unifying platform where the scholarship of IKS could meaningfully intersect with the lived experience. Held on 19 September 2025, the combined memorial lecture and symposium moved beyond a mere commemoration of Dr Mopeli's enduring legacy. It aimed to be a critical engagement that actively pushed the boundaries of contemporary discourse.

The theme itself was a call to action. It sought to highlight the resilience, innovation, and relevance of IKS in solving modern problems, ensuring that indigenous perspectives not only survive but actively shape scientific research, educational curricula, and community development. This focus linked the region’s heritage to future possibilities, echoing Dr Mopeli’s own dedication to education and self-reliance.

 

Wisdom beyond the lecture hall: Inclusive participation

Recognising that indigenous knowledge is deeply rooted in lived experience – as highlighted by keynote speaker Prof Lerato Seleteng-Kose’s presentation on the role of IKS in scientific innovation in Lesotho – the planning team prioritised authentic and inclusive participation. Their strategy deliberately mixed celebrated academics with vital community voices. This involved engaging traditional leaders, community elders, and local IKS practitioners alongside university faculty. 

To bridge the gap between abstract discourse and grassroots practice, the event created a space where storytelling, rituals, and oral traditions were given value equal to formal scholarly papers, including the message from Princess Shoeshoe ‘Tsiame’ Mopeli on cultivating self-reliance. Sessions utilised local languages, most notably Sesotho, to ensure that the knowledge holders felt fully represented and heard.

Dr Elias Nyefolo Malete described Dr Mopeli as a humble leader, passionate about the advancement of his people and the preservation of the Basotho nation. in his address on An Ideational Analysis and Integration of African Folktales in Science, Technology, and Education, he further emphasised the need to treat indigenous narratives not as relics, but as dynamic sources of knowledge for education.

 

The road ahead: Actionable outcomes

The symposium was not designed to be an echo chamber. The planning team identified several specific, measurable deliverables aimed at tracking the long-term impact of the discussions:

Policy Influence: Generating recommendations to be shared with local and national structures to positively influence cultural heritage and education policies.

Curriculum Development: Actively informing the integration of IKS into university curricula across various disciplines, ensuring that future students engage with both the theoretical and applied dimensions of indigenous knowledge.

Community Initiatives: Establishing partnerships to support grassroots-level, community-led projects in areas vital to Dr Mopeli's vision, such as sustainable agriculture, health practices, and cultural preservation.

To ensure that these discussions translate into tangible action, a monitoring framework is being put in place. This includes creating a public repository of all presentations and community contributions and establishing follow-up meetings between the university and community stakeholders.

One of the members of the planning team, Prof Puseletso Mofokeng, concluded, “The 2025 Symposium was a historic moment, transforming the late Dr TK Mopeli's Memorial Lecture into a living, dynamic platform. It reaffirmed that indigenous knowledge is not merely a preserved artefact of the past, but a vital, evolving resource capable of guiding sustainable development and shaping a self-reliant future for the region. The event laid the groundwork for Dr Mopeli’s dream to continue living, not just in memory, but in action, policy, and education.” 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept