Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 October 2025 | Story Precious Shamase | Photo MAFF (Music Art, Food and Fashion) Photography
Roots of Wisdom
Pictured from the left: Princess Shoeshoe Tsiame Mopeli; Prof Cias Tsotetsi, Qwaqwa Campus Vice-Principal: Academic and Research; Prof Lerato Seleteng-Kose from the National University of Lesotho; and Dr Komi Afassinou, Senior Lecturer in the UFS Department of Mathematics and Applied Mathematics.

History was made at the University of the Free State (UFS) Qwaqwa Campus with the groundbreaking convergence of the Dr TK Mopeli Indigenous Knowledge System (IKS) Memorial Lecture and Symposium. This joint inaugural event, held under the compelling theme, Roots of Wisdom: Integrating Indigenous Knowledge in Science and Education: The Legacy of Dr TK Mopeli, served as a powerful platform to bridge the academic sphere with the lived wisdom of local communities.

 

Core vision: From commemoration to critical engagement

The planning team’s core vision was clear: to create a unifying platform where the scholarship of IKS could meaningfully intersect with the lived experience. Held on 19 September 2025, the combined memorial lecture and symposium moved beyond a mere commemoration of Dr Mopeli's enduring legacy. It aimed to be a critical engagement that actively pushed the boundaries of contemporary discourse.

The theme itself was a call to action. It sought to highlight the resilience, innovation, and relevance of IKS in solving modern problems, ensuring that indigenous perspectives not only survive but actively shape scientific research, educational curricula, and community development. This focus linked the region’s heritage to future possibilities, echoing Dr Mopeli’s own dedication to education and self-reliance.

 

Wisdom beyond the lecture hall: Inclusive participation

Recognising that indigenous knowledge is deeply rooted in lived experience – as highlighted by keynote speaker Prof Lerato Seleteng-Kose’s presentation on the role of IKS in scientific innovation in Lesotho – the planning team prioritised authentic and inclusive participation. Their strategy deliberately mixed celebrated academics with vital community voices. This involved engaging traditional leaders, community elders, and local IKS practitioners alongside university faculty. 

To bridge the gap between abstract discourse and grassroots practice, the event created a space where storytelling, rituals, and oral traditions were given value equal to formal scholarly papers, including the message from Princess Shoeshoe ‘Tsiame’ Mopeli on cultivating self-reliance. Sessions utilised local languages, most notably Sesotho, to ensure that the knowledge holders felt fully represented and heard.

Dr Elias Nyefolo Malete described Dr Mopeli as a humble leader, passionate about the advancement of his people and the preservation of the Basotho nation. in his address on An Ideational Analysis and Integration of African Folktales in Science, Technology, and Education, he further emphasised the need to treat indigenous narratives not as relics, but as dynamic sources of knowledge for education.

 

The road ahead: Actionable outcomes

The symposium was not designed to be an echo chamber. The planning team identified several specific, measurable deliverables aimed at tracking the long-term impact of the discussions:

Policy Influence: Generating recommendations to be shared with local and national structures to positively influence cultural heritage and education policies.

Curriculum Development: Actively informing the integration of IKS into university curricula across various disciplines, ensuring that future students engage with both the theoretical and applied dimensions of indigenous knowledge.

Community Initiatives: Establishing partnerships to support grassroots-level, community-led projects in areas vital to Dr Mopeli's vision, such as sustainable agriculture, health practices, and cultural preservation.

To ensure that these discussions translate into tangible action, a monitoring framework is being put in place. This includes creating a public repository of all presentations and community contributions and establishing follow-up meetings between the university and community stakeholders.

One of the members of the planning team, Prof Puseletso Mofokeng, concluded, “The 2025 Symposium was a historic moment, transforming the late Dr TK Mopeli's Memorial Lecture into a living, dynamic platform. It reaffirmed that indigenous knowledge is not merely a preserved artefact of the past, but a vital, evolving resource capable of guiding sustainable development and shaping a self-reliant future for the region. The event laid the groundwork for Dr Mopeli’s dream to continue living, not just in memory, but in action, policy, and education.” 

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept