Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 October 2025 | Story Tshepo Tsotetsi | Photo Supplied
John Bridger Prof Johan Coetzee Roland Rudd Fiat Lux
From left: John Bridger, Old Boys Association Central Committee Board member; Prof Johan Coetzee; and Roland Rudd, Headmaster of Saint Andrews School; at the St Andrews Speech Day awards ceremony on 16 October.

Prof Johan Coetzee, Head of the Department of Economics and Finance at the University of the Free State (UFS), has been named the recipient of the Fiat Lux Award – the highest honour bestowed by St Andrew’s School in Bloemfontein. 

The award, presented at the annual St Andrews Speech Day awards ceremony on Thursday 16 October, recognises Old Andreans (alumni of the school) who have made exceptional contributions to society through professional excellence and personal integrity.

 

A journey of values, excellence, and lifelong connection

Previous recipients of the Fiat Lux Award include notable figures such as former Nedcor CEO Richard Laubscher, palaeoanthropologist, Apartheid activist, and three-time Nobel Prize nominee Prof Phillip Tobias, former President of the American Chamber of Commerce in South Africa Roger Crawford, and Carte Blanche Executive Producer George Mazarakis.

Prof Coetzee, who matriculated from St Andrew’s in 1995, describes the recognition as deeply humbling. “It is difficult to put into words what this means to me. As an Old Boy of St Andrew’s, it puts the seal of approval on the career path I chose – one that started in the corridors of that school 38 years ago,” he says.

He recalls that his school years shaped both his outlook and his work ethic. “The school taught me the importance of teamwork and resilience. It made me realise early on that life is not all rosy, and that one must maintain a balanced perspective – that is what sets St Andrew’s apart.”

For Prof Coetzee, this honour is not only a personal milestone but also a reflection of the close ties between the UFS and local schools of excellence. “It is extremely important for the UFS to maintain strong links with schools like St Andrew’s, which acts as a feeder for future students and athletes. It’s a win-win situation for both institutions,” he says.

He hopes that his recognition will inspire current learners at St Andrew’s to pursue their goals with perseverance. “I hope that this award awakens the drive in the current crop of pupils at Saints to realise that anything is possible – that your background or the setbacks you face do not define you. Also, and perhaps more importantly, that hard work and persistence does pay off.”

Prof Coetzee’s achievement reflects the UFS’ value of Excellence, exemplifying the university’s commitment to nurturing leaders who embody integrity, dedication, and a lifelong pursuit of learning.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept