Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 October 2025 | Story Tshepo Tsotetsi | Photo Supplied
John Bridger Prof Johan Coetzee Roland Rudd Fiat Lux
From left: John Bridger, Old Boys Association Central Committee Board member; Prof Johan Coetzee; and Roland Rudd, Headmaster of Saint Andrews School; at the St Andrews Speech Day awards ceremony on 16 October.

Prof Johan Coetzee, Head of the Department of Economics and Finance at the University of the Free State (UFS), has been named the recipient of the Fiat Lux Award – the highest honour bestowed by St Andrew’s School in Bloemfontein. 

The award, presented at the annual St Andrews Speech Day awards ceremony on Thursday 16 October, recognises Old Andreans (alumni of the school) who have made exceptional contributions to society through professional excellence and personal integrity.

 

A journey of values, excellence, and lifelong connection

Previous recipients of the Fiat Lux Award include notable figures such as former Nedcor CEO Richard Laubscher, palaeoanthropologist, Apartheid activist, and three-time Nobel Prize nominee Prof Phillip Tobias, former President of the American Chamber of Commerce in South Africa Roger Crawford, and Carte Blanche Executive Producer George Mazarakis.

Prof Coetzee, who matriculated from St Andrew’s in 1995, describes the recognition as deeply humbling. “It is difficult to put into words what this means to me. As an Old Boy of St Andrew’s, it puts the seal of approval on the career path I chose – one that started in the corridors of that school 38 years ago,” he says.

He recalls that his school years shaped both his outlook and his work ethic. “The school taught me the importance of teamwork and resilience. It made me realise early on that life is not all rosy, and that one must maintain a balanced perspective – that is what sets St Andrew’s apart.”

For Prof Coetzee, this honour is not only a personal milestone but also a reflection of the close ties between the UFS and local schools of excellence. “It is extremely important for the UFS to maintain strong links with schools like St Andrew’s, which acts as a feeder for future students and athletes. It’s a win-win situation for both institutions,” he says.

He hopes that his recognition will inspire current learners at St Andrew’s to pursue their goals with perseverance. “I hope that this award awakens the drive in the current crop of pupils at Saints to realise that anything is possible – that your background or the setbacks you face do not define you. Also, and perhaps more importantly, that hard work and persistence does pay off.”

Prof Coetzee’s achievement reflects the UFS’ value of Excellence, exemplifying the university’s commitment to nurturing leaders who embody integrity, dedication, and a lifelong pursuit of learning.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept