Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Botma Visser
Prof Botma Visser delivered his inaugural lecture at the University of the Free State, highlighting nearly two decades of research on wheat rust and global food security.

Safeguarding one of the world’s most vital staple foods was at the heart of the inaugural lecture delivered by Prof Botma Visser, Professor in the Department of Plant Sciences at the University of the Free State (UFS), on Wednesday 3 September 2025. Prof Visser shared insights from nearly two decades of research into wheat rust – a devastating crop disease that threatens both South Africa’s harvests and global food security.

“Wheat production in South Africa is threatened by three fungal pathogens that cause rust disease on the crop. Understanding the factors that contribute to virulence on locally grown cultivars is crucial to ensure continued wheat production,” said Prof Visser.

 

The fight against evolving wheat rusts

For the past 17 years, Prof Visser’s research has focused on the genetic structure of rust populations and the risks they pose to food security. His work has shown that these populations are dynamic and constantly changing due to genetic mutations within existing races, as well as the introduction of new races into South Africa.

“Computer modelling showed that rust can spread over vast distances by prevailing winds. During the 20th Century, at least four Southern African stem rust races managed to move across the Indian Ocean from Southern Africa to Australia. South Africa, in turn, received multiple new races from mid-Africa across Zambia and Zimbabwe, without any means of stopping these introductions,” he explained.

To respond to this challenge, his team recently implemented MARPLE (Mobile And Real-time Plant disEase) diagnostics using fourth-generation nanopore sequencing technology. This approach allows the rapid characterisation of fungal isolates, specifically targeting genes linked to fungicide resistance and virulence.

“This work,” Prof Visser noted, “is part of an effort to safeguard global wheat production.”

His research is a collaborative effort with Prof Willem Boshoff (Department of Plant Sciences, UFS) and Dr Tarekegn Terefe (Agricultural Research Council – Small Grain, Bethlehem). Together, their work has positioned the UFS as an internationally recognised centre of excellence in wheat rust research.

 

About Prof Botma Visser

Prof Botma Visser obtained his BSc in Botany and Microbiology (1988), BSc Honours in Microbiology (1989), and MSc in Botany (1993) at the University of the Free State, where he also completed his PhD in Botany in 2004.

His career spans more than 18 years of research into wheat rust pathogens, combining annual surveys, race pathotyping, molecular genetics, and cutting-edge sequencing technologies. His expertise has not only advanced understanding of rust population dynamics in South Africa but also contributed to global collaborative studies on crop disease.

News Archive

Scientists discover a water reservoir beneath the Free State
2009-12-09

Dr Holger Sommer

The Mantle Research Group Bloemfontein (MRGB), under the leadership of Dr Holger Sommer, a senior lecturer in the Department of Geology at the University of the Free State (UFS), has discovered an enormous water reservoir 160 km beneath the Free State.

This discovery, according to Dr Sommer, is the first of its kind in South Africa after he had previously made a similar finding in Colorado, USA.

However, this water cannot be used for human consumption. “It is not frozen water; it is not molecular water; it is not fresh water; it is not salty water; it is OH – water which is sitting in the crystal lattice,” he said.

He said the reservoir was comparable in size to Lake Victoria in Tanzania.
The researchers collected eclogites from the Roberts Victor (Rovic) Mine close to the town of Boshof, south-west of the Free State, for their study.

“The Rovic eclogites are rocks which represent former oceanic crust transported into the earth’s interior by complex plate tectonic processes about 2.0 billion years ago,” explained Dr Sommer.

“These rocks were finally carried back to the earth’s surface by volcanic (kimberlite) eruptions around 130 million years ago. Eclogitic rocks are therefore a window into the Earth’s interior.”

The question from the beginning for all MRGB scientists was: Is there water inside these rocks in such depth, and if so, where is it located?

To answer this question, Dr Sommer and his research fellows separated single mineral grains from eclogite samples and prepared about 100 micrometer (0,1 mm) thick rock sections. Afterwards, specific particle accelerator (Synchrotron) measurements were carried out in the city of Karlsruhe in Germany.

“And indeed, the MRGB found water inside the studied rocks from the Roberts Victor Mine,” he said. “The water was located in defect structures in crystal lattices and along boundaries between single mineral grains.”

“The occurrence of water at such depth would give first evidence that all water of the oceans could be stored five to ten times in the earth’s mantle.”
The study was conducted about a year ago.
 

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@ufs.ac.za
4 December 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept