Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Botma Visser
Prof Botma Visser delivered his inaugural lecture at the University of the Free State, highlighting nearly two decades of research on wheat rust and global food security.

Safeguarding one of the world’s most vital staple foods was at the heart of the inaugural lecture delivered by Prof Botma Visser, Professor in the Department of Plant Sciences at the University of the Free State (UFS), on Wednesday 3 September 2025. Prof Visser shared insights from nearly two decades of research into wheat rust – a devastating crop disease that threatens both South Africa’s harvests and global food security.

“Wheat production in South Africa is threatened by three fungal pathogens that cause rust disease on the crop. Understanding the factors that contribute to virulence on locally grown cultivars is crucial to ensure continued wheat production,” said Prof Visser.

 

The fight against evolving wheat rusts

For the past 17 years, Prof Visser’s research has focused on the genetic structure of rust populations and the risks they pose to food security. His work has shown that these populations are dynamic and constantly changing due to genetic mutations within existing races, as well as the introduction of new races into South Africa.

“Computer modelling showed that rust can spread over vast distances by prevailing winds. During the 20th Century, at least four Southern African stem rust races managed to move across the Indian Ocean from Southern Africa to Australia. South Africa, in turn, received multiple new races from mid-Africa across Zambia and Zimbabwe, without any means of stopping these introductions,” he explained.

To respond to this challenge, his team recently implemented MARPLE (Mobile And Real-time Plant disEase) diagnostics using fourth-generation nanopore sequencing technology. This approach allows the rapid characterisation of fungal isolates, specifically targeting genes linked to fungicide resistance and virulence.

“This work,” Prof Visser noted, “is part of an effort to safeguard global wheat production.”

His research is a collaborative effort with Prof Willem Boshoff (Department of Plant Sciences, UFS) and Dr Tarekegn Terefe (Agricultural Research Council – Small Grain, Bethlehem). Together, their work has positioned the UFS as an internationally recognised centre of excellence in wheat rust research.

 

About Prof Botma Visser

Prof Botma Visser obtained his BSc in Botany and Microbiology (1988), BSc Honours in Microbiology (1989), and MSc in Botany (1993) at the University of the Free State, where he also completed his PhD in Botany in 2004.

His career spans more than 18 years of research into wheat rust pathogens, combining annual surveys, race pathotyping, molecular genetics, and cutting-edge sequencing technologies. His expertise has not only advanced understanding of rust population dynamics in South Africa but also contributed to global collaborative studies on crop disease.

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept