Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Botma Visser
Prof Botma Visser delivered his inaugural lecture at the University of the Free State, highlighting nearly two decades of research on wheat rust and global food security.

Safeguarding one of the world’s most vital staple foods was at the heart of the inaugural lecture delivered by Prof Botma Visser, Professor in the Department of Plant Sciences at the University of the Free State (UFS), on Wednesday 3 September 2025. Prof Visser shared insights from nearly two decades of research into wheat rust – a devastating crop disease that threatens both South Africa’s harvests and global food security.

“Wheat production in South Africa is threatened by three fungal pathogens that cause rust disease on the crop. Understanding the factors that contribute to virulence on locally grown cultivars is crucial to ensure continued wheat production,” said Prof Visser.

 

The fight against evolving wheat rusts

For the past 17 years, Prof Visser’s research has focused on the genetic structure of rust populations and the risks they pose to food security. His work has shown that these populations are dynamic and constantly changing due to genetic mutations within existing races, as well as the introduction of new races into South Africa.

“Computer modelling showed that rust can spread over vast distances by prevailing winds. During the 20th Century, at least four Southern African stem rust races managed to move across the Indian Ocean from Southern Africa to Australia. South Africa, in turn, received multiple new races from mid-Africa across Zambia and Zimbabwe, without any means of stopping these introductions,” he explained.

To respond to this challenge, his team recently implemented MARPLE (Mobile And Real-time Plant disEase) diagnostics using fourth-generation nanopore sequencing technology. This approach allows the rapid characterisation of fungal isolates, specifically targeting genes linked to fungicide resistance and virulence.

“This work,” Prof Visser noted, “is part of an effort to safeguard global wheat production.”

His research is a collaborative effort with Prof Willem Boshoff (Department of Plant Sciences, UFS) and Dr Tarekegn Terefe (Agricultural Research Council – Small Grain, Bethlehem). Together, their work has positioned the UFS as an internationally recognised centre of excellence in wheat rust research.

 

About Prof Botma Visser

Prof Botma Visser obtained his BSc in Botany and Microbiology (1988), BSc Honours in Microbiology (1989), and MSc in Botany (1993) at the University of the Free State, where he also completed his PhD in Botany in 2004.

His career spans more than 18 years of research into wheat rust pathogens, combining annual surveys, race pathotyping, molecular genetics, and cutting-edge sequencing technologies. His expertise has not only advanced understanding of rust population dynamics in South Africa but also contributed to global collaborative studies on crop disease.

News Archive

Good quality wheat essential for bread production
2016-11-29

Description: Robbie Lindeque Tags: Robbie Lindeque 

Robert Lindeque, wheat breeder at the ARC
Small Grain Institute in Bethlehem.
Photo: Supplied

“Wheat quality, specifically grain protein, is of the most crucial components determining the profitability of wheat farmers.”

This is according to Robbie Lindeque, wheat breeder at the ARC Small Grain Institute in Bethlehem. As a wheat breeder, one of his primary aims is to make a contribution to sustainable wheat production in the inland of South Africa.

A closer analysis of bread wheat protein

With his PHD thesis, "Protein quality versus quantity in South African commercial bread wheat cultivars”, Lindeque answered critical questions regarding the South African wheat industry. The major question of his PhD, which he received on 30 June 2016, was whether protein quality could compensate for protein quantity as a measure of bread quality in South Africa.

The three main wheat-producing areas in South Africa, the dryland summer rainfall region (Free State), dryland winter rainfall region (Western Cape), and the cooler irrigation regions (Northern Cape), were used as a starting point for the study.

Proteins are essential for the baking of good quality bread. Worldwide, the utilisation of wheat flour shipments in the baking industry is determined by the protein proportion of the shipment.

Lindeque says the aim of his thesis was to determine whether a closer analysis of bread wheat protein would provide a better indication of good or bad bread quality. “The conclusion from this study was that both protein quantity and protein quality from all three production areas in South Africa varies constantly in accuracy regarding the estimation of bread volume, mainly as a result of environmental factors,” says Lindeque.

Results relevant to the wheat industry

In 2012, application was made to the Winter Cereal Trust for funding of the project. After funding was approved – thus making the Winter Cereal Trust the main partner – seed samples were collected from the 2012 and 2013 national cultivar adaptation trials.

“After this, the seed underwent protein and flour analyses, which added a third year to the study, with the fourth year consisting of statistical processing and documenting of the results,” says Lindeque.

Funding by the Winter Cereals Trust contributed to the fact that the study constantly attempted to keep issues and results as relevant as possible to the wheat industry.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept