Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2025 | Story Kagiso Ngake and Dr Nitha Ramnath | Photo Stephen Collett
Consulate
Left: Stephanie Bruce, Consul General of the United States in South Africa Right: Prof Hester C. Klopper, Vice-Chancellor and Principal of the University of the Free State

The University of the Free State (UFS) recently had the honour of hosting Stephanie Bunce, Consul General of the United States (US) in South Africa, and her delegation on the Bloemfontein Campus. The visit came at a significant moment, shortly after the first 100 days of Prof Hester C. Klopper’s tenure as Vice-Chancellor and Principal. 

The meeting marked an important introduction between two leaders new in their respective roles: Prof Klopper at the UFS, and Consul General Bunce, who began her posting in Johannesburg in September 2024. Their discussions offered an opportunity to align the strategic ambitions of the UFS with the priorities of the U.S Mission in South Africa, while reflecting on the longstanding and fruitful relationship between the UFS and American universities. 

Consul General Bunce commended the depth of UFS’s academic partnerships with the United States and expressed enthusiasm about the university’s future direction. “I’m really excited to hear what you’re looking for in the next few years and how we can continue to work together,” she said.

 

Advancing clinical training and collaboration 

The delegation toured the world-class Clinical Simulation and Skills Unit (CSSU), where Prof Mathys Labuschagne, Head of Clinical Simulation and Skills Unit, School of Biomedical Sciences, and his team showcased how advanced simulation technologies prepare students for clinical practice. “Hands-on practice in a safe, non-threatening environment is one of the best ways to build confidence and skills,” explained Prof Labuschagne. 

The CSSU was developed based on a model from Penn State University following a visit 15 years ago - a collaboration that has continued to thrive. “Collaboration with US universities opens doors for joint teaching, student exchanges, and research partnerships that drive innovation,” Prof Labuschagne added. 

 

Deepening a century of partnership 

Collaboration between the UFS and the U.S universities dates back more than a century. In the 1920s, the University of Michigan established the Lamont-Hussey Observatory on Naval Hill, and Harvard University relocated the Boyden Observatory to Maselspoort. Both observatories, now part of the UFS, symbolise a legacy of shared scientific discovery. 

These historic ties have since evolved into formal agreements with universities across the United States. Between 2020 and 2024, the US was the leading country collaborating with the UFS, producing more than 929 co-authored publications across 648 institutions. Today, partnerships continue to expand through research, academic exchanges, and staff mobility programmes that leave a lasting impact on students and society alike. 

Consul General Bunce highlighted the distinctive nature of these partnerships. “In many countries, academic exchange is driven by government. Here, it grows organically from strong relationships and programmes.”

Prof Lynette Jacobs, interim Director in the Office for International Affairs, emphasised the value of these ties: “Our partnership with the United States shows how a strong and mature relationship can drive diversified internationalisation, advancing our strategic goal of global engagement with real impact. We look forward to welcoming the Consul General on our other two campuses.”   

 

Driving innovation and commercialisation

In her address, Prof Klopper outlined the university’s vision to translate research into real-world solutions and commercial opportunities. “The UFS is learning from many American universities’ innovative models, which leverage multiple income streams and strong industry partnerships,” noted Prof Klopper. Prof Klopper emphasised that diversifying income is not only about sustainability but also about ensuring research has impact. Recent spin-off companies are an example of this vision becoming reality. 

 

Charting the future 

The US delegation expressed strong interest in UFS’s areas of strength, including community engagement, entrepreneurship, and student success initiatives. They also highlighted the potential for US students to study at the UFS, with consular support services in place to assist visiting students in emergencies. 

“It is wonderful to see relationships that grow and change but continue to bring in new partnerships and exchanges,” Consul General Bunce remarked. 

With plans for new mobility schemes, joint research projects, and a shared commitment to innovation, the UFS and its US partners are well-positioned to shape the next chapter in their century-long story of collaboration.  

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept