Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2025 | Story Kagiso Ngake and Dr Nitha Ramnath | Photo Stephen Collett
Consulate
Left: Stephanie Bruce, Consul General of the United States in South Africa Right: Prof Hester C. Klopper, Vice-Chancellor and Principal of the University of the Free State

The University of the Free State (UFS) recently had the honour of hosting Stephanie Bunce, Consul General of the United States (US) in South Africa, and her delegation on the Bloemfontein Campus. The visit came at a significant moment, shortly after the first 100 days of Prof Hester C. Klopper’s tenure as Vice-Chancellor and Principal. 

The meeting marked an important introduction between two leaders new in their respective roles: Prof Klopper at the UFS, and Consul General Bunce, who began her posting in Johannesburg in September 2024. Their discussions offered an opportunity to align the strategic ambitions of the UFS with the priorities of the U.S Mission in South Africa, while reflecting on the longstanding and fruitful relationship between the UFS and American universities. 

Consul General Bunce commended the depth of UFS’s academic partnerships with the United States and expressed enthusiasm about the university’s future direction. “I’m really excited to hear what you’re looking for in the next few years and how we can continue to work together,” she said.

 

Advancing clinical training and collaboration 

The delegation toured the world-class Clinical Simulation and Skills Unit (CSSU), where Prof Mathys Labuschagne, Head of Clinical Simulation and Skills Unit, School of Biomedical Sciences, and his team showcased how advanced simulation technologies prepare students for clinical practice. “Hands-on practice in a safe, non-threatening environment is one of the best ways to build confidence and skills,” explained Prof Labuschagne. 

The CSSU was developed based on a model from Penn State University following a visit 15 years ago - a collaboration that has continued to thrive. “Collaboration with US universities opens doors for joint teaching, student exchanges, and research partnerships that drive innovation,” Prof Labuschagne added. 

 

Deepening a century of partnership 

Collaboration between the UFS and the U.S universities dates back more than a century. In the 1920s, the University of Michigan established the Lamont-Hussey Observatory on Naval Hill, and Harvard University relocated the Boyden Observatory to Maselspoort. Both observatories, now part of the UFS, symbolise a legacy of shared scientific discovery. 

These historic ties have since evolved into formal agreements with universities across the United States. Between 2020 and 2024, the US was the leading country collaborating with the UFS, producing more than 929 co-authored publications across 648 institutions. Today, partnerships continue to expand through research, academic exchanges, and staff mobility programmes that leave a lasting impact on students and society alike. 

Consul General Bunce highlighted the distinctive nature of these partnerships. “In many countries, academic exchange is driven by government. Here, it grows organically from strong relationships and programmes.”

Prof Lynette Jacobs, interim Director in the Office for International Affairs, emphasised the value of these ties: “Our partnership with the United States shows how a strong and mature relationship can drive diversified internationalisation, advancing our strategic goal of global engagement with real impact. We look forward to welcoming the Consul General on our other two campuses.”   

 

Driving innovation and commercialisation

In her address, Prof Klopper outlined the university’s vision to translate research into real-world solutions and commercial opportunities. “The UFS is learning from many American universities’ innovative models, which leverage multiple income streams and strong industry partnerships,” noted Prof Klopper. Prof Klopper emphasised that diversifying income is not only about sustainability but also about ensuring research has impact. Recent spin-off companies are an example of this vision becoming reality. 

 

Charting the future 

The US delegation expressed strong interest in UFS’s areas of strength, including community engagement, entrepreneurship, and student success initiatives. They also highlighted the potential for US students to study at the UFS, with consular support services in place to assist visiting students in emergencies. 

“It is wonderful to see relationships that grow and change but continue to bring in new partnerships and exchanges,” Consul General Bunce remarked. 

With plans for new mobility schemes, joint research projects, and a shared commitment to innovation, the UFS and its US partners are well-positioned to shape the next chapter in their century-long story of collaboration.  

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept