Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2025 | Story Reuben Maeko | Photo Sizwe Gwiba
Dermatology Unit
Celebrating the milestone launch of the Dermatologic Surgery Unit at Universitas Academic Hospital, a new chapter for advanced patient care, training, and research.

The Department of Dermatology in the Faculty of Health Sciences at the University of the Free State (UFS) marked a historic milestone with the official opening of the Dermatologic Surgery Unit at Universitas Academic Hospital on 11 September 2025. This new facility represents a significant step forward in expanding access to specialised surgical treatment for complex dermatological conditions, while simultaneously strengthening academic training and research opportunities for registrars and medical students.

The inauguration was attended by Prof Francois P Retief, a distinguished medical pioneer from the UFS Faculty of Health Sciences, after whom one of the faculty buildings is named. His wife, Ria Retief, extended words of gratitude and gifted a book from his medical library to Prof Frans Maruma, Head of the Department of Dermatology.

“We are truly honoured to be included in this significant milestone and to witness the beginning of what we know will be an impactful journey aimed at improving patient care,” Ria Retief said. “It is a privilege to celebrate this remarkable achievement with you, and we deeply admire your dedication and vision.”

 

Honouring a legacy in dermatology

In his opening address, Prof Maruma reflected on the journey that led to the establishment of the Dermatologic Surgery Unit, acknowledging the teamwork, persistence, and collaboration that made the vision a reality.

“The Derm-Surgery Unit is not just a surgical space – it is a testament to teamwork, perseverance, and the drive to advance patient-centred care in dermatology,” he said. “We pay homage to visionary leadership that has afforded us the opportunity to expand dermatology services to include surgery and as a skill sacrosanct to modern practice. This is not only about healing, but also about preparing our registrars for the realities of clinical practice through work-integrated learning.”

Prof Maruma extended appreciation to colleagues and staff members in the Department of Dermatology, as well as strategic partners in the UFS, the Department of Health, the pharmaceutical industry, and private practitioners who dedicate their time to teaching and mentoring. Special acknowledgement was given to Dr Marc Roscher, Dr Harriet Makuru, and Dr Yashica Khalawan, who played a pivotal role in supporting the project’s launch.

The programme also included remarks by senior academic leaders. Prof Alicia Sherriff, Acting Head of the School of Clinical Medicine, commended the department for its innovation and foresight in the face of resource limitations, highlighting the potential for further expansion through collaboration with both public and private stakeholders.

While cutting the ribbon, Prof Thabiso Mofokeng, Head of Internal Medicine at Universitas Academic Hospital, emphasised that the launch of the Derm-Surgery Unit reflects the broader ethos of the clinical platform: to enable world-class training, foster research excellence, and deliver quality healthcare that is responsive to the needs of the community.

The launch underscored the university’s commitment to Work-Integrated Learning (WIL), bridging the gap between academic training and real-world clinical demands. The Derm-Surgery initiative is designed to equip registrars with essential industry-specific skills in procedural dermatology while fostering collaboration between private and public healthcare sectors. The evening concluded with awards recognising individuals whose contributions ensured the success of this landmark opening.

Looking ahead, the Department of Dermatology envisions its Derm-Surgery Unit as more than just a clinical unit – it is set to become a hub of advanced patient care, high-impact training, and cutting-edge research. This initiative strengthens the UFS Faculty of Health Sciences’ role as a leader in medical education and healthcare innovation in the Free State and beyond.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept