Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2025 | Story Reuben Maeko | Photo Sizwe Gwiba
Dermatology Unit
Celebrating the milestone launch of the Dermatologic Surgery Unit at Universitas Academic Hospital, a new chapter for advanced patient care, training, and research.

The Department of Dermatology in the Faculty of Health Sciences at the University of the Free State (UFS) marked a historic milestone with the official opening of the Dermatologic Surgery Unit at Universitas Academic Hospital on 11 September 2025. This new facility represents a significant step forward in expanding access to specialised surgical treatment for complex dermatological conditions, while simultaneously strengthening academic training and research opportunities for registrars and medical students.

The inauguration was attended by Prof Francois P Retief, a distinguished medical pioneer from the UFS Faculty of Health Sciences, after whom one of the faculty buildings is named. His wife, Ria Retief, extended words of gratitude and gifted a book from his medical library to Prof Frans Maruma, Head of the Department of Dermatology.

“We are truly honoured to be included in this significant milestone and to witness the beginning of what we know will be an impactful journey aimed at improving patient care,” Ria Retief said. “It is a privilege to celebrate this remarkable achievement with you, and we deeply admire your dedication and vision.”

 

Honouring a legacy in dermatology

In his opening address, Prof Maruma reflected on the journey that led to the establishment of the Dermatologic Surgery Unit, acknowledging the teamwork, persistence, and collaboration that made the vision a reality.

“The Derm-Surgery Unit is not just a surgical space – it is a testament to teamwork, perseverance, and the drive to advance patient-centred care in dermatology,” he said. “We pay homage to visionary leadership that has afforded us the opportunity to expand dermatology services to include surgery and as a skill sacrosanct to modern practice. This is not only about healing, but also about preparing our registrars for the realities of clinical practice through work-integrated learning.”

Prof Maruma extended appreciation to colleagues and staff members in the Department of Dermatology, as well as strategic partners in the UFS, the Department of Health, the pharmaceutical industry, and private practitioners who dedicate their time to teaching and mentoring. Special acknowledgement was given to Dr Marc Roscher, Dr Harriet Makuru, and Dr Yashica Khalawan, who played a pivotal role in supporting the project’s launch.

The programme also included remarks by senior academic leaders. Prof Alicia Sherriff, Acting Head of the School of Clinical Medicine, commended the department for its innovation and foresight in the face of resource limitations, highlighting the potential for further expansion through collaboration with both public and private stakeholders.

While cutting the ribbon, Prof Thabiso Mofokeng, Head of Internal Medicine at Universitas Academic Hospital, emphasised that the launch of the Derm-Surgery Unit reflects the broader ethos of the clinical platform: to enable world-class training, foster research excellence, and deliver quality healthcare that is responsive to the needs of the community.

The launch underscored the university’s commitment to Work-Integrated Learning (WIL), bridging the gap between academic training and real-world clinical demands. The Derm-Surgery initiative is designed to equip registrars with essential industry-specific skills in procedural dermatology while fostering collaboration between private and public healthcare sectors. The evening concluded with awards recognising individuals whose contributions ensured the success of this landmark opening.

Looking ahead, the Department of Dermatology envisions its Derm-Surgery Unit as more than just a clinical unit – it is set to become a hub of advanced patient care, high-impact training, and cutting-edge research. This initiative strengthens the UFS Faculty of Health Sciences’ role as a leader in medical education and healthcare innovation in the Free State and beyond.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept