Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2025 | Story Reuben Maeko | Photo Sizwe Gwiba
Dermatology Unit
Celebrating the milestone launch of the Dermatologic Surgery Unit at Universitas Academic Hospital, a new chapter for advanced patient care, training, and research.

The Department of Dermatology in the Faculty of Health Sciences at the University of the Free State (UFS) marked a historic milestone with the official opening of the Dermatologic Surgery Unit at Universitas Academic Hospital on 11 September 2025. This new facility represents a significant step forward in expanding access to specialised surgical treatment for complex dermatological conditions, while simultaneously strengthening academic training and research opportunities for registrars and medical students.

The inauguration was attended by Prof Francois P Retief, a distinguished medical pioneer from the UFS Faculty of Health Sciences, after whom one of the faculty buildings is named. His wife, Ria Retief, extended words of gratitude and gifted a book from his medical library to Prof Frans Maruma, Head of the Department of Dermatology.

“We are truly honoured to be included in this significant milestone and to witness the beginning of what we know will be an impactful journey aimed at improving patient care,” Ria Retief said. “It is a privilege to celebrate this remarkable achievement with you, and we deeply admire your dedication and vision.”

 

Honouring a legacy in dermatology

In his opening address, Prof Maruma reflected on the journey that led to the establishment of the Dermatologic Surgery Unit, acknowledging the teamwork, persistence, and collaboration that made the vision a reality.

“The Derm-Surgery Unit is not just a surgical space – it is a testament to teamwork, perseverance, and the drive to advance patient-centred care in dermatology,” he said. “We pay homage to visionary leadership that has afforded us the opportunity to expand dermatology services to include surgery and as a skill sacrosanct to modern practice. This is not only about healing, but also about preparing our registrars for the realities of clinical practice through work-integrated learning.”

Prof Maruma extended appreciation to colleagues and staff members in the Department of Dermatology, as well as strategic partners in the UFS, the Department of Health, the pharmaceutical industry, and private practitioners who dedicate their time to teaching and mentoring. Special acknowledgement was given to Dr Marc Roscher, Dr Harriet Makuru, and Dr Yashica Khalawan, who played a pivotal role in supporting the project’s launch.

The programme also included remarks by senior academic leaders. Prof Alicia Sherriff, Acting Head of the School of Clinical Medicine, commended the department for its innovation and foresight in the face of resource limitations, highlighting the potential for further expansion through collaboration with both public and private stakeholders.

While cutting the ribbon, Prof Thabiso Mofokeng, Head of Internal Medicine at Universitas Academic Hospital, emphasised that the launch of the Derm-Surgery Unit reflects the broader ethos of the clinical platform: to enable world-class training, foster research excellence, and deliver quality healthcare that is responsive to the needs of the community.

The launch underscored the university’s commitment to Work-Integrated Learning (WIL), bridging the gap between academic training and real-world clinical demands. The Derm-Surgery initiative is designed to equip registrars with essential industry-specific skills in procedural dermatology while fostering collaboration between private and public healthcare sectors. The evening concluded with awards recognising individuals whose contributions ensured the success of this landmark opening.

Looking ahead, the Department of Dermatology envisions its Derm-Surgery Unit as more than just a clinical unit – it is set to become a hub of advanced patient care, high-impact training, and cutting-edge research. This initiative strengthens the UFS Faculty of Health Sciences’ role as a leader in medical education and healthcare innovation in the Free State and beyond.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept