Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 September 2025 | Story Martinette Brits | Photo Martinette Brits and Kaleidoscope Studios
GreenerSA
Jeminah Seqela from Food and Trees for Africa demonstrates tree planting as part of the initiative to plant 100 trees on the day.

The University of the Free State (UFS) launched Greener SA, a five-year initiative to plant 400 000 trees across South Africa, at the Paradys Experimental Farm on Friday 12 September 2025. Backed by the Mastercard Foundation through the TAGDev 2.0 programme and RUFORUM, the project brings together government, industry, students, and academics around a shared commitment to sustainability and food security. The launch was marked by the planting of the first 100 trees, a symbolic act that set the tone for the years ahead.

Prof Jan-Willem Swanepoel, Director of the Centre for Sustainable Agriculture, reminded the audience that the UFS is one of 12 African universities entrusted with a $100 million investment in agricultural transformation. “This project is not a hit-and-run – it’s about sustainability, inclusivity, and building value chains that empower farmers and entrepreneurs,” he said. He ended with a parable of a farmhand who could ‘sleep when the wind blows,’ urging everyone to be proactive in preparing for inevitable challenges.

 

Responsibility and partnerships

That call for responsibility was echoed by Elzabe Rockman, Free State MEC for Agriculture and Rural Development, who linked Greener SA to the presidential One Million Trees Programme. She cautioned that planting without accountability leads to wasted effort. “If we plant trees, we want to be sure someone takes responsibility for them,” she said, highlighting the need for fire-resistant species, fruit trees in community gardens, and natural borders to replace vulnerable fencing. Looking at the students from Kovsie ACT who joined the launch, she added: “Jobs are not going to fall from the sky. They will come from agriculture and the environment. Harnessing youth energy is the way forward.”

Industry also pledged its support. Representing Empact Group – the sponsor of the trees – Helena Prinsloo described tree planting as an investment in legacy. “At Empact Group, we believe that doing right by our community and our planet is not just a responsibility. It’s a value that defines who we are and how we lead,” she said. Quoting the proverb that societies grow great when people plant trees whose shade they will never sit in, she added: “Today we are sowing seeds of hope, resilience, and opportunities for generations to come.”

 

Science, vision, and practice

Prof Corli Witthuhn from the Faculty of Natural and Agricultural Sciences placed the launch in a global context, pointing to conflict, inequality, and climate change – and the sobering United Nations report showing that only 20% of the sustainability goals have been achieved. For her, the Greener SA project is a response to urgent global challenges. “We want our students to be globally work-ready,” she said. “That means beyond textbooks, and this farm represents exactly that. We don’t want to produce graduates with degrees, we want to produce graduates who can walk into a lab, into a policy meeting, into a business anywhere in the world and make an impact.”

Her message was supported by expert voices. Guest speaker Prof Ben du Toit from Stellenbosch University explained that agroforestry systems can simultaneously provide timber, food, biodiversity, and resilience. “Agroforestry is not planting trees over here and grazing over there – it’s about integration, so that benefits reinforce each other,” he said.

At the Paradys Experimental Farm, this integration is already underway. Johan Barnard, Farm Manager and Junior Lecturer, described how shaded tree pockets will improve grazing fields and protect water resources, while fruit trees planted in partnership with Kovsie ACT will contribute to student nutrition and new food value chains. “We’re capturing value chains and taking it to the next level so that our students have research opportunities and the farm delivers real outputs,” he explained.

The launch of Greener SA showed that tree planting is about much more than beautification. It is a collective commitment – to resilience in the face of global challenges, to science applied in practice, and to building partnerships that prepare the next generation to make an impact.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept