Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2020

Statement by Prof Francis Petersen, Rector and Vice-Chancellor

The university’s executive management is aware of the statement on COVID-19 alert Level 2 measures in the post-school education and training sector delivered by the Minister of Higher Education, Science and Innovation, Dr Blade Nzimande, on 26 August 2020.

During the statement, Dr Nzimande indicated that the University of the Free State (UFS) is one of six universities that is deemed to be at medium risk of not completing the academic year. The statement was surprising and disappointing, since through an engagement between the Department of Higher Education and Training (DHET) and the UFS almost a week ago to understand the university’s approach to the completion of the 2020 academic year, as well as the interpretation of specific information provided by the university in its COVID-19 Responsiveness Multi-modal Teaching and Learning Programme to the DHET, the DHET was clear that the UFS was not at a medium risk, but indeed at a low to very low risk of not completing the academic year.

Since the statement by Dr Nzimande, I received a letter from the Deputy Director-General: University Education at the DHET, Dr Di Parker on 28 August 2020 confirming that the university’s risk rating has been adjusted to a low risk rating. The DHET also recognised the good work done by the UFS towards successful completion of the academic year. 

Let me explain why the DHET delegation expressed its opinion that the UFS was at a low to very low risk of not completing the academic year. The UFS has taken an evidence-based approach to managing the impact of the pandemic. Within the first weeks of the national lockdown, the Special Executive Group (SEG) was formed, which meets weekly to discuss various aspects of the institution’s operations and to forecast and plan the impact of the pandemic. As the university’s COVID-19 nerve centre, the SEG has several task teams, one of which is the Teaching and Learning Management Group (TLMG).

The core function of the TLMG was to ensure that teaching and learning could continue to help staff and students to successfully complete the academic year. The first step in the evidence-based response was to conduct a survey among UFS students to assess their access to devices and data. Altogether 13 500 students responded to the survey. The results showed that 92% of students had an internet-enabled device, 70% could get access to the internet off campus, and 56% had access to a laptop.

Based on this evidence, we immediately initiated the purchase of 3 500 laptops to be distributed to NSFAS- and Funza Lushaka-funded students and students with disabilities. In addition, the Keep Calm, #UFSLearnOn, and #UFSTeachOn campaigns have been launched. These campaigns are aimed at creating the best possible support for academic staff and students, respectively by adapting existing support and practices most suited to an emergency remote-learning environment. The departure point of both campaigns was to design a response for the constrained environments of our students.  

The #UFSLearnOn campaign for students creates materials that students can download on their cellphones and that would provide them with skills and ideas on how to get connected and create an environment where they could study at home. The #UFSLearnOn website has been viewed by 77 000 students to date; the resources were shared with other universities to support a collaborative approach to addressing the COVID-19 challenge. In addition, 177 000 Facebook users have been reached by #UFSLearnOn materials.

The #UFSTeachOn campaign focused on supporting staff to transform their materials and teaching approach to a new reality. Altogether 1 409 staff members attended training sessions, which all ran overtime due to the commitment of staff to create the best possible response. Both the #UFSLearnOn and #UFSTeachOn campaigns are continuing, with an overwhelmingly positive response from our staff and students. 

However, these campaigns would become two of the 16 strategies the university has developed to manage the risks created by the pandemic. Creating responses is, however, not enough – evidence is needed to make a difference. Therefore, the Centre for Teaching and Learning (CTL) was tasked with creating a monitoring system using data analytics. To date, 26 reports have served at the weekly TLMG meetings. The reports monitor the number of staff and students on the Learning Management System, how much time they are spending on learning, and whether they are completing assessments. 

During the peak of the first semester, 90% of students were supported online by academic and support staff. The average performance of students per faculty per campus has been monitored. The use of data analytics allowed us to identify students who were not connecting, as part of the No Student Left Behind initiative. Out of the 41 000 students at the UFS, 989 students were identified who had not connected with learning. These students were contacted individually and to date, 80% of these students have been helped to connect. Additional plans are being developed to support the other 20% to plan for the successful continuation of their studies. The success of our approach is not only borne out by quantitative evidence, but also by qualitative feedback such as the following quote received by an academic adviser on 24 August 2020:

“Thank you so much [advisor’s name]; if it wasn't for you, I would have dropped out, deregistered, or even committed suicide during this pandemic. I want to say that I have passed all my modules with distinctions, all thanks to you. After all the difficulty of learning I have experienced during this period. Please continue your great work to others (you were truly meant for this job), and God bless you.”

There are hundreds more quotations like these that testify to the inspiring efforts of our students and staff to finish the academic year successfully with very low risk. 

The UFS will continue with its project management and risk-adjusted management approach and is fully committed to ensure that no student is left behind and that the 2020 academic year is successfully completed.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept